BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36457859)

  • 1. Expanding the molecular versatility of an optogenetic switch in yeast.
    Figueroa D; Baeza C; Ruiz D; Inzunza C; Romero A; Toro R; Salinas F
    Front Bioeng Biotechnol; 2022; 10():1029217. PubMed ID: 36457859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light-Oxygen-Voltage Domain.
    Hepp S; Trauth J; Hasenjäger S; Bezold F; Essen LO; Taxis C
    J Mol Biol; 2020 Mar; 432(7):1880-1900. PubMed ID: 32105734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system.
    Hansen J; Felding T; Johannesen PF; Piskur J; Christensen CL; Olesen K
    FEMS Yeast Res; 2003 Dec; 4(3):323-7. PubMed ID: 14654437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-Terminal Region of the BcWCL1 Photoreceptor Is Necessary for Self-Dimerization and Transcriptional Activation upon Light Stimulation in Yeast.
    Guerrero M; Ruiz C; Romero A; Robeson L; Ruiz D; Salinas F
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Lalwani MA; Zhao EM; Wegner SA; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2060-2075. PubMed ID: 34346207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three putative photosensory light, oxygen or voltage (LOV) domains with distinct biochemical properties from the filamentous cyanobacterium Anabaena sp. PCC 7120.
    Narikawa R; Zikihara K; Okajima K; Ochiai Y; Katayama M; Shichida Y; Tokutomi S; Ikeuchi M
    Photochem Photobiol; 2006; 82(6):1627-33. PubMed ID: 16922605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.
    Lee SY; Cheah JS; Zhao B; Xu C; Roh H; Kim CK; Cho KF; Udeshi ND; Carr SA; Ting AY
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast.
    Rojas V; Larrondo LF
    ACS Synth Biol; 2023 Jan; 12(1):71-82. PubMed ID: 36534043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal optogenetic triple-gene control in Mammalian cells.
    Müller K; Engesser R; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2014 Nov; 3(11):796-801. PubMed ID: 25343333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae.
    Gritz L; Davies J
    Gene; 1983 Nov; 25(2-3):179-88. PubMed ID: 6319235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of dark recovery kinetic parameters and structural features in the pseudomonadaceae "short" light, oxygen, voltage (LOV) protein family: implications for the design of LOV-based optogenetic tools.
    Rani R; Jentzsch K; Lecher J; Hartmann R; Willbold D; Jaeger KE; Krauss U
    Biochemistry; 2013 Jul; 52(26):4460-73. PubMed ID: 23746326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids.
    Glantz ST; Berlew EE; Jaber Z; Schuster BS; Gardner KH; Chow BY
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):E7720-E7727. PubMed ID: 30065115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced structural changes in a short light, oxygen, voltage (LOV) protein revealed by molecular dynamics simulations-implications for the understanding of LOV photoactivation.
    Bocola M; Schwaneberg U; Jaeger KE; Krauss U
    Front Mol Biosci; 2015; 2():55. PubMed ID: 26484348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit.
    Christie JM; Gawthorne J; Young G; Fraser NJ; Roe AJ
    Mol Plant; 2012 May; 5(3):533-44. PubMed ID: 22431563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.
    Harmer ZP; McClean MN
    ACS Synth Biol; 2023 Jul; 12(7):1943-1951. PubMed ID: 37434272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.