These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36458331)
41. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome. Fronczek R; Lammers GJ; Balesar R; Unmehopa UA; Swaab DF J Clin Endocrinol Metab; 2005 Sep; 90(9):5466-70. PubMed ID: 15985489 [TBL] [Abstract][Full Text] [Related]
42. Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways. Dumais KM; Bredewold R; Mayer TE; Veenema AH Horm Behav; 2013 Sep; 64(4):693-701. PubMed ID: 24055336 [TBL] [Abstract][Full Text] [Related]
43. AAV-BDNF gene therapy ameliorates a hypothalamic neuroinflammatory signature in the Queen NJ; Huang W; Zou X; Mo X; Cao L Mol Ther Methods Clin Dev; 2023 Dec; 31():101108. PubMed ID: 37766791 [TBL] [Abstract][Full Text] [Related]
44. The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Boccaccio I; Glatt-Deeley H; Watrin F; Roëckel N; Lalande M; Muscatelli F Hum Mol Genet; 1999 Dec; 8(13):2497-505. PubMed ID: 10556298 [TBL] [Abstract][Full Text] [Related]
45. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Hoyos Sanchez MC; Bayat T; Gee RRF; Fon Tacer K Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685915 [TBL] [Abstract][Full Text] [Related]
46. Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Salles J; Eddiry S; Lacassagne E; Laurier V; Molinas C; Bieth É; Franchitto N; Salles JP; Tauber M Clin Epigenetics; 2021 Aug; 13(1):159. PubMed ID: 34389046 [TBL] [Abstract][Full Text] [Related]
47. Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Althammer F; Muscatelli F; Grinevich V; Schaaf CP Transl Psychiatry; 2022 Aug; 12(1):318. PubMed ID: 35941105 [TBL] [Abstract][Full Text] [Related]
48. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Einfeld SL; Smith E; McGregor IS; Steinbeck K; Taffe J; Rice LJ; Horstead SK; Rogers N; Hodge MA; Guastella AJ Am J Med Genet A; 2014 Sep; 164A(9):2232-9. PubMed ID: 24980612 [TBL] [Abstract][Full Text] [Related]
49. An interaction of oxytocin receptors with metabotropic glutamate receptors in hypothalamic astrocytes. Kuo J; Hariri OR; Micevych P J Neuroendocrinol; 2009 Dec; 21(12):1001-6. PubMed ID: 19807846 [TBL] [Abstract][Full Text] [Related]
50. Two mouse models carrying truncating mutations in Magel2 show distinct phenotypes. Ieda D; Negishi Y; Miyamoto T; Johmura Y; Kumamoto N; Kato K; Miyoshi I; Nakanishi M; Ugawa S; Oishi H; Saitoh S PLoS One; 2020; 15(8):e0237814. PubMed ID: 32804975 [TBL] [Abstract][Full Text] [Related]
51. Choi Y; Min HY; Hwang J; Jo YH Life Sci Alliance; 2022 Nov; 5(11):. PubMed ID: 36007929 [TBL] [Abstract][Full Text] [Related]
52. Prader-Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain. Lee S; Walker CL; Wevrick R Gene Expr Patterns; 2003 Oct; 3(5):599-609. PubMed ID: 12971993 [TBL] [Abstract][Full Text] [Related]
53. The relationship between endogenous oxytocin and vasopressin levels and the Prader-Willi syndrome behaviour phenotype. Rice LJ; Agu J; Carter CS; Harris JC; Nazarloo HP; Naanai H; Einfeld SL Front Endocrinol (Lausanne); 2023; 14():1183525. PubMed ID: 37313445 [TBL] [Abstract][Full Text] [Related]
54. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Bischof JM; Stewart CL; Wevrick R Hum Mol Genet; 2007 Nov; 16(22):2713-9. PubMed ID: 17728320 [TBL] [Abstract][Full Text] [Related]
55. Schaaf-Yang syndrome shows a Prader-Willi syndrome-like phenotype during infancy. Negishi Y; Ieda D; Hori I; Nozaki Y; Yamagata T; Komaki H; Tohyama J; Nagasaki K; Tada H; Saitoh S Orphanet J Rare Dis; 2019 Dec; 14(1):277. PubMed ID: 31791363 [TBL] [Abstract][Full Text] [Related]
56. Anorexigenic melanocortin signaling in the hypothalamus is augmented in association with failure-to-thrive in a transgenic mouse model for Prader-Willi syndrome. Ge Y; Ohta T; Driscoll DJ; Nicholls RD; Kalra SP Brain Res; 2002 Dec; 957(1):42-5. PubMed ID: 12443978 [TBL] [Abstract][Full Text] [Related]
57. The imprinted gene Magel2 regulates normal circadian output. Kozlov SV; Bogenpohl JW; Howell MP; Wevrick R; Panda S; Hogenesch JB; Muglia LJ; Van Gelder RN; Herzog ED; Stewart CL Nat Genet; 2007 Oct; 39(10):1266-72. PubMed ID: 17893678 [TBL] [Abstract][Full Text] [Related]
58. Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Maillard J; Park S; Croizier S; Vanacker C; Cook JH; Prevot V; Tauber M; Bouret SG Hum Mol Genet; 2016 Aug; 25(15):3208-3215. PubMed ID: 27288456 [TBL] [Abstract][Full Text] [Related]
59. Endocrine and metabolic aspects of adult Prader-Willi syndrome with special emphasis on the effect of growth hormone treatment. Höybye C Growth Horm IGF Res; 2004 Feb; 14(1):1-15. PubMed ID: 14700552 [TBL] [Abstract][Full Text] [Related]
60. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis. Mejlachowicz D; Nolent F; Maluenda J; Ranjatoelina-Randrianaivo H; Giuliano F; Gut I; Sternberg D; Laquerrière A; Melki J Am J Hum Genet; 2015 Oct; 97(4):616-20. PubMed ID: 26365340 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]