These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36458424)

  • 21. Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer.
    Duan C; Chaovalitwongse WA; Bai F; Hippe DS; Wang S; Thammasorn P; Pierce LA; Liu X; You J; Miyaoka RS; Vesselle HJ; Kinahan PE; Rengan R; Zeng J; Bowen SR
    Phys Med Biol; 2020 Oct; 65(20):205007. PubMed ID: 33027064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Standardized 18F-FDG PET/CT radiomic features provide information on PD-L1 expression status in treatment-naïve patients with non-small cell lung cancer.
    Zhang R; Hohenforst-Schmidt W; Steppert C; Sziklavari Z; Schmidkonz C; Atzinger A; Kuwert T; Klink T; Sterlacci W; Hartmann A; Vieth M; Förster S
    Nuklearmedizin; 2022 Oct; 61(5):385-393. PubMed ID: 35768005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding.
    Khodabakhshi Z; Amini M; Hajianfar G; Oveisi M; Shiri I; Zaidi H
    Clin Oncol (R Coll Radiol); 2023 Nov; 35(11):713-725. PubMed ID: 37599160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [18F] FDG Positron Emission Tomography (PET) Tumor and Penumbra Imaging Features Predict Recurrence in Non-Small Cell Lung Cancer.
    Mattonen SA; Davidzon GA; Bakr S; Echegaray S; Leung ANC; Vasanawala M; Horng G; Napel S; Nair VS
    Tomography; 2019 Mar; 5(1):145-153. PubMed ID: 30854452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of mediastinal lymph node metastasis based on
    Yin G; Song Y; Li X; Zhu L; Su Q; Dai D; Xu W
    Eur Radiol; 2021 Jun; 31(6):3983-3992. PubMed ID: 33201286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The efficacy of
    Nakajo M; Takeda A; Katsuki A; Jinguji M; Ohmura K; Tani A; Sato M; Yoshiura T
    Br J Radiol; 2022 Jun; 95(1134):20211050. PubMed ID: 35312337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IMPORTANCE of PRETREATMENT 18F-FDG PET/CT TEXTURE ANALYSIS in PREDICTING EGFR and ALK MUTATION in PATIENTS with NON-SMALL CELL LUNG CANCER.
    Agüloğlu N; Aksu A; Akyol M; Katgı N; Doksöz TÇ
    Nuklearmedizin; 2022 Dec; 61(6):433-439. PubMed ID: 35977671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graph Neural Network Model for Prediction of Non-Small Cell Lung Cancer Lymph Node Metastasis Using Protein-Protein Interaction Network and
    Ju H; Kim K; Kim BI; Woo SK
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients.
    Kanzaki R; Higashiyama M; Maeda J; Okami J; Hosoki T; Hasegawa Y; Takami M; Kodama K
    Interact Cardiovasc Thorac Surg; 2010 Jun; 10(6):1009-14. PubMed ID: 20197344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pretherapy 18F-fluorodeoxyglucose positron emission tomography/computed tomography robust radiomic features predict overall survival in non-small cell lung cancer.
    Mostafa R; Abdelsamie Kandeel A; Abd Elkareem M; Nardo L; Abdelhafez YG
    Nucl Med Commun; 2022 May; 43(5):540-548. PubMed ID: 35190518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Machine Learning Analyses Using Clinical and [
    Kawaji K; Nakajo M; Shinden Y; Jinguji M; Tani A; Hirahara D; Kitazono I; Ohtsuka T; Yoshiura T
    Mol Imaging Biol; 2023 Oct; 25(5):923-934. PubMed ID: 37193804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with
    Zhu Y; Cong S; Zhang Q; Huang Z; Yao X; Cheng Y; Liang D; Hu Z; Shao D
    Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39214122
    [No Abstract]   [Full Text] [Related]  

  • 33. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [
    de Jesus FM; Yin Y; Mantzorou-Kyriaki E; Kahle XU; de Haas RJ; Yakar D; Glaudemans AWJM; Noordzij W; Kwee TC; Nijland M
    Eur J Nucl Med Mol Imaging; 2022 Apr; 49(5):1535-1543. PubMed ID: 34850248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based machine learning model for predicting epidermal growth factor receptor mutations in non-small cell lung cancer.
    Ruan D; Fang J; Teng X
    Q J Nucl Med Mol Imaging; 2024 Mar; 68(1):70-83. PubMed ID: 35420272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Volume-based parameters of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection.
    Hyun SH; Choi JY; Kim K; Kim J; Shim YM; Um SW; Kim H; Lee KH; Kim BT
    Ann Surg; 2013 Feb; 257(2):364-70. PubMed ID: 22968069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiomics of
    Mu W; Tunali I; Gray JE; Qi J; Schabath MB; Gillies RJ
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1168-1182. PubMed ID: 31807885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Value of pre-therapy
    Zhang J; Zhao X; Zhao Y; Zhang J; Zhang Z; Wang J; Wang Y; Dai M; Han J
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Body Composition and Radiomics From 18 F-FDG PET/CT Together Help Predict Prognosis for Patients With Stage IV Non-Small Cell Lung Cancer.
    Zhang Y; Tan W; Zheng Z; Wang J; Xing L; Sun X
    J Comput Assist Tomogr; 2023 Nov-Dec 01; 47(6):906-912. PubMed ID: 37948365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [
    Rogasch JMM; Michaels L; Baumgärtner GL; Frost N; Rückert JC; Neudecker J; Ochsenreither S; Gerhold M; Schmidt B; Schneider P; Amthauer H; Furth C; Penzkofer T
    Eur J Nucl Med Mol Imaging; 2023 Jun; 50(7):2140-2151. PubMed ID: 36820890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predictive value of 18F-FDG PET and CT morphologic features for recurrence in pathological stage IA non-small cell lung cancer.
    Ko KH; Hsu HH; Huang TW; Gao HW; Cheng CY; Hsu YC; Chang WC; Chu CM; Chen JH; Lee SC
    Medicine (Baltimore); 2015 Jan; 94(3):e434. PubMed ID: 25621697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.