These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36458437)

  • 1. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information.
    Peng Z; Li Z; Meng Q; Zhao B; Kurgan L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CoMemMoRFPred: Sequence-based Prediction of MemMoRFs by Combining Predictors of Intrinsic Disorder, MoRFs and Disordered Lipid-binding Regions.
    Basu S; Hegedűs T; Kurgan L
    J Mol Biol; 2023 Nov; 435(21):168272. PubMed ID: 37709009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Functions of Disordered Proteins with MoRFpred.
    Oldfield CJ; Uversky VN; Kurgan L
    Methods Mol Biol; 2019; 1851():337-352. PubMed ID: 30298407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server.
    Barik A; Katuwawala A; Hanson J; Paliwal K; Zhou Y; Kurgan L
    J Mol Biol; 2020 May; 432(11):3379-3387. PubMed ID: 31870849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions.
    Sharma R; Sharma A; Patil A; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):378. PubMed ID: 30717652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles.
    Sharma R; Bayarjargal M; Tsunoda T; Patil A; Sharma A
    J Theor Biol; 2018 Jan; 437():9-16. PubMed ID: 29042212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins.
    Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L
    Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions.
    Hu G; Katuwawala A; Wang K; Wu Z; Ghadermarzi S; Gao J; Kurgan L
    Nat Commun; 2021 Jul; 12(1):4438. PubMed ID: 34290238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput prediction of disordered moonlighting regions in protein sequences.
    Meng F; Kurgan L
    Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor.
    Oldfield CJ; Fan X; Wang C; Dunker AK; Kurgan L
    Methods Mol Biol; 2020; 2141():21-35. PubMed ID: 32696351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DisoLipPred: accurate prediction of disordered lipid-binding residues in protein sequences with deep recurrent networks and transfer learning.
    Katuwawala A; Zhao B; Kurgan L
    Bioinformatics; 2021 Dec; 38(1):115-124. PubMed ID: 34487138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular recognition features (MoRFs) in three domains of life.
    Yan J; Dunker AK; Uversky VN; Kurgan L
    Mol Biosyst; 2016 Mar; 12(3):697-710. PubMed ID: 26651072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation.
    Fang C; Noguchi T; Tominaga D; Yamana H
    BMC Bioinformatics; 2013 Oct; 14():300. PubMed ID: 24093637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of disordered binding regions.
    Basu S; Kihara D; Kurgan L
    Comput Struct Biotechnol J; 2023; 21():1487-1497. PubMed ID: 36851914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
    Sharma R; Raicar G; Tsunoda T; Patil A; Sharma A
    Bioinformatics; 2018 Jun; 34(11):1850-1858. PubMed ID: 29360926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind.
    Peng Z; Wang C; Uversky VN; Kurgan L
    Methods Mol Biol; 2017; 1484():187-203. PubMed ID: 27787828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of MoRFs, Short Disorder-to-order Transitioning Protein Binding Regions.
    Katuwawala A; Peng Z; Yang J; Kurgan L
    Comput Struct Biotechnol J; 2019; 17():454-462. PubMed ID: 31007871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational identification of MoRFs in protein sequences.
    Malhis N; Gsponer J
    Bioinformatics; 2015 Jun; 31(11):1738-44. PubMed ID: 25637562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins.
    Katuwawala A; Kurgan L
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33291838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins.
    Zhang J; Basu S; Kurgan L
    Nucleic Acids Res; 2024 Jan; 52(2):e10. PubMed ID: 38048333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.