BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 36458557)

  • 1. Circulating CD133+/–CD34– Have Increased c-
    Uslu Bıçak İ; Tokcan B; Yavuz AS; Tokdemir SS
    Turk J Haematol; 2023 Feb; 40(1):28-36. PubMed ID: 36458557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hypoxia on HIF-1α and NOS3 expressions in CD34
    Şoroğlu CV; Uslu-Bıçak İ; Toprak SF; Yavuz AS; Sözer S
    Adv Med Sci; 2023 Sep; 68(2):169-175. PubMed ID: 37075583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms.
    Zhan H; Lin CHS; Segal Y; Kaushansky K
    Leukemia; 2018 Feb; 32(2):462-469. PubMed ID: 28744010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential thrombocythaemia progression to the fibrotic phase is associated with a decrease in JAK2 and PDL1 levels.
    Lewandowski K; Kanduła Z; Gniot M; Paczkowska E; Nawrocka PM; Wojtaszewska M; Janowski M; Mariak M; Handschuh L; Kozlowski P
    Ann Hematol; 2022 Dec; 101(12):2665-2677. PubMed ID: 36266510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK2V617F mutant endothelial cells promote neoplastic hematopoiesis in a mixed vascular microenvironment.
    Mazzeo C; Quan M; Wong H; Castiglione M; Kaushansky K; Zhan H
    Blood Cells Mol Dis; 2021 Sep; 90():102585. PubMed ID: 34139651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK2V617F Megakaryocytes Promote Hematopoietic Stem/Progenitor Cell Expansion in Mice Through Thrombopoietin/MPL Signaling.
    Zhang Y; Lin CHS; Kaushansky K; Zhan H
    Stem Cells; 2018 Nov; 36(11):1676-1684. PubMed ID: 30005133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms.
    Čokić VP; Mitrović-Ajtić O; Beleslin-Čokić BB; Marković D; Buač M; Diklić M; Kraguljac-Kurtović N; Damjanović S; Milenković P; Gotić M; Raj PK
    Mediators Inflamm; 2015; 2015():453020. PubMed ID: 26491227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Ruxolitinib on Myeloproliferative Neoplasms via the Negative Regulators.
    Wang SY; Xie XL; Liang JY; Cheng ZY
    Clin Lab; 2023 Feb; 69(2):. PubMed ID: 36787550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoblotting-assisted assessment of JAK/STAT and PI3K/Akt/mTOR signaling in myeloproliferative neoplasms CD34+ stem cells.
    Calabresi L; Balliu M; Bartalucci N
    Methods Cell Biol; 2022; 171():81-109. PubMed ID: 35953207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current approaches to challenging scenarios in myeloproliferative neoplasms.
    Zimran E; Hoffman R; Kremyanskaya M
    Expert Rev Anticancer Ther; 2018 Jun; 18(6):567-578. PubMed ID: 29575945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine 201 is required for constitutive activation of JAK2V617F and efficient induction of myeloproliferative disease in mice.
    Yan D; Hutchison RE; Mohi G
    Blood; 2012 Aug; 120(9):1888-98. PubMed ID: 22837531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles.
    Hekimoğlu H; Toprak SF; Sözer S
    Turk J Haematol; 2022 Feb; 39(1):13-21. PubMed ID: 34981912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms.
    Chen E; Schneider RK; Breyfogle LJ; Rosen EA; Poveromo L; Elf S; Ko A; Brumme K; Levine R; Ebert BL; Mullally A
    Blood; 2015 Jan; 125(2):327-35. PubMed ID: 25281607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion.
    Kent DG; Li J; Tanna H; Fink J; Kirschner K; Pask DC; Silber Y; Hamilton TL; Sneade R; Simons BD; Green AR
    PLoS Biol; 2013; 11(6):e1001576. PubMed ID: 23750118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis.
    Rampal R; Al-Shahrour F; Abdel-Wahab O; Patel JP; Brunel JP; Mermel CH; Bass AJ; Pretz J; Ahn J; Hricik T; Kilpivaara O; Wadleigh M; Busque L; Gilliland DG; Golub TR; Ebert BL; Levine RL
    Blood; 2014 May; 123(22):e123-33. PubMed ID: 24740812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes.
    Wernig G; Gonneville JR; Crowley BJ; Rodrigues MS; Reddy MM; Hudon HE; Walz C; Reiter A; Podar K; Royer Y; Constantinescu SN; Tomasson MH; Griffin JD; Gilliland DG; Sattler M
    Blood; 2008 Apr; 111(7):3751-9. PubMed ID: 18216297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The JAK2 mutation.
    Merchant S
    Int Rev Cell Mol Biol; 2021; 365():117-162. PubMed ID: 34756242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JAK2 inhibitors in the treatment of myeloproliferative neoplasms.
    Tibes R; Bogenberger JM; Geyer HL; Mesa RA
    Expert Opin Investig Drugs; 2012 Dec; 21(12):1755-74. PubMed ID: 22991927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms.
    Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y
    Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.