BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36458737)

  • 1. 3D Bioelectronics with a Remodellable Matrix for Long-Term Tissue Integration and Recording.
    Boys AJ; Carnicer-Lombarte A; Güemes-Gonzalez A; van Niekerk DC; Hilton S; Barone DG; Proctor CM; Owens RM; Malliaras GG
    Adv Mater; 2023 Feb; 35(8):e2207847. PubMed ID: 36458737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials.
    Lee S; Ozlu B; Eom T; Martin DC; Shim BS
    Biosens Bioelectron; 2020 Dec; 170():112620. PubMed ID: 33035903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation.
    Tang H; Li Y; Liao S; Liu H; Qiao Y; Zhou J
    Adv Healthc Mater; 2024 May; ():e2400562. PubMed ID: 38773929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Power Transfer and Telemetry for Implantable Bioelectronics.
    Yoo S; Lee J; Joo H; Sunwoo SH; Kim S; Kim DH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100614. PubMed ID: 34075721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Interfacing between Soft Electronic Tools and Complex Biological Tissues.
    Li H; Liu H; Sun M; Huang Y; Xu L
    Adv Mater; 2021 Jan; 33(3):e2004425. PubMed ID: 33283351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stretchable and customizable microneedle electrode arrays for intramuscular electromyography.
    Zhao Q; Gribkova E; Shen Y; Cui J; Naughton N; Liu L; Seo J; Tong B; Gazzola M; Gillette R; Zhao H
    Sci Adv; 2024 May; 10(18):eadn7202. PubMed ID: 38691612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel bioelectronics.
    Yuk H; Lu B; Zhao X
    Chem Soc Rev; 2019 Mar; 48(6):1642-1667. PubMed ID: 30474663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NanoPt-A Nanostructured Electrode Coating for Neural Recording and Microstimulation.
    Boehler C; Vieira DM; Egert U; Asplund M
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14855-14865. PubMed ID: 32162910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring.
    Yu J; Ling W; Li Y; Ma N; Wu Z; Liang R; Pan H; Liu W; Fu B; Wang K; Li C; Wang H; Peng H; Ning B; Yang J; Huang X
    Small; 2021 Jan; 17(4):e2005925. PubMed ID: 33372299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics.
    Sang M; Kim K; Shin J; Yu KJ
    Adv Sci (Weinh); 2022 Oct; 9(30):e2202980. PubMed ID: 36031395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable softening bioelectronics: A paradigm for chronically viable ester-free neural interfaces such as spinal cord stimulation implants.
    Garcia-Sandoval A; Guerrero E; Hosseini SM; Rocha-Flores PE; Rihani R; Black BJ; Pal A; Carmel JB; Pancrazio JJ; Voit WE
    Biomaterials; 2021 Oct; 277():121073. PubMed ID: 34419732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B
    Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic bioelectronics in medicine.
    Löffler S; Melican K; Nilsson KPR; Richter-Dahlfors A
    J Intern Med; 2017 Jul; 282(1):24-36. PubMed ID: 28181720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation.
    Cox-Pridmore DM; Castro FA; Silva SRP; Camelliti P; Zhao Y
    Small; 2022 Apr; 18(17):e2105281. PubMed ID: 35119208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing tissue engineering and regenerative medicine solutions in medical implants.
    Ye D; Peramo A
    Br Med Bull; 2014; 109():3-18. PubMed ID: 24357734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Softening implantable bioelectronics: Material designs, applications, and future directions.
    Oh S; Lee S; Kim SW; Kim CY; Jeong EY; Lee J; Kwon DA; Jeong JW
    Biosens Bioelectron; 2024 Aug; 258():116328. PubMed ID: 38692223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytically Stable Thiol-ene Networks for Flexible Bioelectronics.
    Reit R; Zamorano D; Parker S; Simon D; Lund B; Voit W; Ware TH
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28673-81. PubMed ID: 26650346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A guide towards long-term functional electrodes interfacing neuronal tissue.
    Renz AF; Reichmuth AM; Stauffer F; Thompson-Steckel G; Vörös J
    J Neural Eng; 2018 Dec; 15(6):061001. PubMed ID: 30324918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.