These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 36459353)
1. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Zheng L; Song Q; Xu X; Shen X; Li C; Li H; Chen H; Ren A Sci China Life Sci; 2023 Jan; 66(1):31-50. PubMed ID: 36459353 [TBL] [Abstract][Full Text] [Related]
4. SAM-VI riboswitch structure and signature for ligand discrimination. Sun A; Gasser C; Li F; Chen H; Mair S; Krasheninina O; Micura R; Ren A Nat Commun; 2019 Dec; 10(1):5728. PubMed ID: 31844059 [TBL] [Abstract][Full Text] [Related]
5. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch. Doshi U; Kelley JM; Hamelberg D RNA; 2012 Feb; 18(2):300-7. PubMed ID: 22194311 [TBL] [Abstract][Full Text] [Related]
6. The impact of a ligand binding on strand migration in the SAM-I riboswitch. Huang W; Kim J; Jha S; Aboul-ela F PLoS Comput Biol; 2013; 9(5):e1003069. PubMed ID: 23704854 [TBL] [Abstract][Full Text] [Related]
8. Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch. Hu G; Zhou HX Commun Biol; 2023 Jul; 6(1):791. PubMed ID: 37524918 [TBL] [Abstract][Full Text] [Related]
9. Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch. Priyakumar UD J Phys Chem B; 2010 Aug; 114(30):9920-5. PubMed ID: 20614931 [TBL] [Abstract][Full Text] [Related]
10. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706 [TBL] [Abstract][Full Text] [Related]
11. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. Huang W; Kim J; Jha S; Aboul-Ela F J Mol Biol; 2012 May; 418(5):331-49. PubMed ID: 22425639 [TBL] [Abstract][Full Text] [Related]
12. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Heppell B; Blouin S; Dussault AM; Mulhbacher J; Ennifar E; Penedo JC; Lafontaine DA Nat Chem Biol; 2011 Jun; 7(6):384-92. PubMed ID: 21532599 [TBL] [Abstract][Full Text] [Related]
14. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. Dussault AM; Dubé A; Jacques F; Grondin JP; Lafontaine DA RNA; 2017 Oct; 23(10):1539-1551. PubMed ID: 28701520 [TBL] [Abstract][Full Text] [Related]
15. RNA Ensembles from Solvent Accessibility Data: Application to the SAM-I Riboswitch Aptamer Domain. Xie J; Frank AT J Phys Chem B; 2021 Apr; 125(14):3486-3493. PubMed ID: 33818089 [TBL] [Abstract][Full Text] [Related]
16. Conformational capture of the SAM-II riboswitch. Haller A; Rieder U; Aigner M; Blanchard SC; Micura R Nat Chem Biol; 2011 Jun; 7(6):393-400. PubMed ID: 21532598 [TBL] [Abstract][Full Text] [Related]
17. Folding of the SAM-I riboswitch: a tale with a twist. Eschbach SH; St-Pierre P; Penedo JC; Lafontaine DA RNA Biol; 2012 May; 9(5):535-41. PubMed ID: 22336759 [TBL] [Abstract][Full Text] [Related]
18. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch. Suresh G; Srinivasan H; Nanda S; Priyakumar UD Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101 [TBL] [Abstract][Full Text] [Related]
19. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Lu C; Smith AM; Fuchs RT; Ding F; Rajashankar K; Henkin TM; Ke A Nat Struct Mol Biol; 2008 Oct; 15(10):1076-83. PubMed ID: 18806797 [TBL] [Abstract][Full Text] [Related]
20. Structural studies of the purine and SAM binding riboswitches. Gilbert SD; Montange RK; Stoddard CD; Batey RT Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]