These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36459353)

  • 21. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms.
    Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for diversity in the SAM clan of riboswitches.
    Trausch JJ; Xu Z; Edwards AL; Reyes FE; Ross PE; Knight R; Batey RT
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6624-9. PubMed ID: 24753586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomistic basis for the on-off signaling mechanism in SAM-II riboswitch.
    Kelley JM; Hamelberg D
    Nucleic Acids Res; 2010 Mar; 38(4):1392-400. PubMed ID: 19969538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure and ligand-induced folding of the SAM/SAH riboswitch.
    Huang L; Liao TW; Wang J; Ha T; Lilley DMJ
    Nucleic Acids Res; 2020 Jul; 48(13):7545-7556. PubMed ID: 32520325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding the Identification Mechanism of an SAM-III Riboswitch on Ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations.
    Chen J; Zeng Q; Wang W; Sun H; Hu G
    J Chem Inf Model; 2022 Dec; 62(23):6118-6132. PubMed ID: 36440874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch.
    Boyapati VK; Huang W; Spedale J; Aboul-Ela F
    RNA; 2012 Jun; 18(6):1230-43. PubMed ID: 22543867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.
    Corbino KA; Barrick JE; Lim J; Welz R; Tucker BJ; Puskarz I; Mandal M; Rudnick ND; Breaker RR
    Genome Biol; 2005; 6(8):R70. PubMed ID: 16086852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution.
    Zhang K; Li S; Kappel K; Pintilie G; Su Z; Mou TC; Schmid MF; Das R; Chiu W
    Nat Commun; 2019 Dec; 10(1):5511. PubMed ID: 31796736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and ligand binding of the SAM-V riboswitch.
    Huang L; Lilley DMJ
    Nucleic Acids Res; 2018 Jul; 46(13):6869-6879. PubMed ID: 29931337
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Xiao W; Liu G; Chen T; Zhang Y; Lu C
    Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
    Poiata E; Meyer MM; Ames TD; Breaker RR
    RNA; 2009 Nov; 15(11):2046-56. PubMed ID: 19776155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.
    Salvail H; Balaji A; Roth A; Breaker RR
    Cell Rep; 2023 Dec; 42(12):113571. PubMed ID: 38096053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Validation of SAM Riboswitch Element A from
    Hall I; Zablock K; Sobetski R; Weidmann CA; Keane SC
    Biochemistry; 2024 Oct; 63(20):2621-2631. PubMed ID: 39323220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA.
    Tang DJ; Du X; Shi Q; Zhang JL; He YP; Chen YM; Ming Z; Wang D; Zhong WY; Liang YW; Liu JY; Huang JM; Zhong YS; An SQ; Gu H; Tang JL
    Nat Commun; 2020 Jun; 11(1):2794. PubMed ID: 32493973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine.
    Wang JX; Breaker RR
    Biochem Cell Biol; 2008 Apr; 86(2):157-68. PubMed ID: 18443629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.
    Weinberg Z; Regulski EE; Hammond MC; Barrick JE; Yao Z; Ruzzo WL; Breaker RR
    RNA; 2008 May; 14(5):822-8. PubMed ID: 18369181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning riboswitch regulation through conformational selection.
    Wilson RC; Smith AM; Fuchs RT; Kleckner IR; Henkin TM; Foster MP
    J Mol Biol; 2011 Jan; 405(4):926-38. PubMed ID: 21075119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible-Switch Mechanism of the SAM-III Riboswitch.
    Gong S; Wang Y; Wang Z; Wang Y; Zhang W
    J Phys Chem B; 2016 Dec; 120(48):12305-12311. PubMed ID: 27934232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.