These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36459430)

  • 41. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds.
    Güney A; Malda J; Dhert WJA; Grijpma DW
    Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.
    Trinca RB; Abraham GA; Felisberti MI
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Biocompatibility evaluation of lactide--trimethylene carbonate copolymers].
    Tu S; Yang J; Chen Y; Luo X; Li S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):595-9. PubMed ID: 20649027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of Photo-Crosslinkable Poly(Trimethylene Carbonate)/Polycaprolactone Nanofibrous Scaffolds for Tendon Regeneration.
    Li X; Chen H; Xie S; Wang N; Wu S; Duan Y; Zhang M; Shui L
    Int J Nanomedicine; 2020; 15():6373-6383. PubMed ID: 32904686
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides.
    Zhang Z; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2004 Apr; 15(4):381-5. PubMed ID: 15332603
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH
    J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ibuprofen-loaded poly(trimethylene carbonate-co-ε-caprolactone) electrospun fibres for nerve regeneration.
    Pires LR; Guarino V; Oliveira MJ; Ribeiro CC; Barbosa MA; Ambrosio L; Pêgo AP
    J Tissue Eng Regen Med; 2016 Mar; 10(3):E154-66. PubMed ID: 23950030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly(l-lactide) and Poly(l-lactide- co-trimethylene carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship.
    Fuoco T; Mathisen T; Finne-Wistrand A
    Biomacromolecules; 2019 Mar; 20(3):1346-1361. PubMed ID: 30665299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications.
    Kim K; Yu M; Zong X; Chiu J; Fang D; Seo YS; Hsiao BS; Chu B; Hadjiargyrou M
    Biomaterials; 2003 Dec; 24(27):4977-85. PubMed ID: 14559011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of poly (trimethylene carbonate)/reduced graphene oxide-graft-poly (trimethylene carbonate) composite scaffolds for nerve regeneration.
    Guo Z; Liang J; Poot AA; Grijpma DW; Chen H
    Biomed Mater; 2019 Feb; 14(2):024104. PubMed ID: 30665200
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor.
    Wang Q; Gao Y; Sun X; Ji B; Cui X; Liu Y; Zheng T; Chen C; Jiang X; Zhu A; Quan D
    Biomed Mater; 2014 Aug; 9(4):045004. PubMed ID: 24945939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering.
    Song Y; Kamphuis MM; Zhang Z; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Acta Biomater; 2010 Apr; 6(4):1269-77. PubMed ID: 19818420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Liquid, phenylazide-end-capped copolymers of epsilon-caprolactone and trimethylene carbonate: preparation, photocuring characteristics, and surface layering.
    Mizutani M; Arnold SC; Matsuda T
    Biomacromolecules; 2002; 3(4):668-75. PubMed ID: 12099809
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
    Cha KJ; Lih E; Choi J; Joung YK; Ahn DJ; Han DK
    Macromol Biosci; 2014 May; 14(5):667-78. PubMed ID: 24446274
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.
    Fukushima K
    Biomater Sci; 2016 Jan; 4(1):9-24. PubMed ID: 26323327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amphiphilic chitosan-g-poly(trimethylene carbonate) - A new approach for biomaterials design.
    Andreica BI; Ailincai D; Sandu AI; Marin L
    Int J Biol Macromol; 2021 Dec; 193(Pt A):414-424. PubMed ID: 34715200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of Poly(l-lactide-co-ɛ-caprolactone) and Poly(trimethylene carbonate) Membranes for Urethral Regeneration: An In Vitro and In Vivo Study.
    Sartoneva R; Nordback PH; Haimi S; Grijpma DW; Lehto K; Rooney N; Seppänen-Kaijansinkko R; Miettinen S; Lahdes-Vasama T
    Tissue Eng Part A; 2018 Jan; 24(1-2):117-127. PubMed ID: 28463605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shape-memory properties and degradation behavior of multifunctional electro-spun scaffolds.
    Kratz K; Habermann R; Becker T; Richau K; Lendlein A
    Int J Artif Organs; 2011 Feb; 34(2):225-30. PubMed ID: 21374579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cross-linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications.
    Dargaville BL; Vaquette C; Peng H; Rasoul F; Chau YQ; Cooper-White JJ; Campbell JH; Whittaker AK
    Biomacromolecules; 2011 Nov; 12(11):3856-69. PubMed ID: 21999900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding of how the properties of medical grade lactide based copolymer scaffolds influence adipose tissue regeneration: Sterilization and a systematic in vitro assessment.
    Jain S; Yassin MA; Fuoco T; Mohamed-Ahmed S; Vindenes H; Mustafa K; Finne-Wistrand A
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112020. PubMed ID: 33947531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.