These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36459651)

  • 1. The molecular basis for pore pattern morphogenesis in diatom silica.
    Heintze C; Babenko I; Zackova Suchanova J; Skeffington A; Friedrich BM; Kröger N
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2211549119. PubMed ID: 36459651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstituting the formation of hierarchically porous silica patterns using diatom biomolecules.
    Pawolski D; Heintze C; Mey I; Steinem C; Kröger N
    J Struct Biol; 2018 Oct; 204(1):64-74. PubMed ID: 30009877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization.
    Kotzsch A; Gröger P; Pawolski D; Bomans PHH; Sommerdijk NAJM; Schlierf M; Kröger N
    BMC Biol; 2017 Jul; 15(1):65. PubMed ID: 28738898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diatoms-from cell wall biogenesis to nanotechnology.
    Kröger N; Poulsen N
    Annu Rev Genet; 2008; 42():83-107. PubMed ID: 18983255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of branching morphogenesis inspired by diatom silica formation.
    Babenko I; Kröger N; Friedrich BM
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2309518121. PubMed ID: 38422023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopatterned protein microrings from a diatom that direct silica morphogenesis.
    Scheffel A; Poulsen N; Shian S; Kröger N
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3175-80. PubMed ID: 21300899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shedding light on silica biomineralization by comparative analysis of the silica-associated proteomes from three diatom species.
    Skeffington AW; Gentzel M; Ohara A; Milentyev A; Heintze C; Böttcher L; Görlich S; Shevchenko A; Poulsen N; Kröger N
    Plant J; 2022 Jun; 110(6):1700-1716. PubMed ID: 35403318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prescribing diatom morphology: toward genetic engineering of biological nanomaterials.
    Kröger N
    Curr Opin Chem Biol; 2007 Dec; 11(6):662-9. PubMed ID: 17991447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation.
    Lechner CC; Becker CF
    Mar Drugs; 2015 Aug; 13(8):5297-333. PubMed ID: 26295401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pentalysine clusters mediate silica targeting of silaffins in Thalassiosira pseudonana.
    Poulsen N; Scheffel A; Sheppard VC; Chesley PM; Kröger N
    J Biol Chem; 2013 Jul; 288(28):20100-9. PubMed ID: 23720751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of an endoplasmic reticulum-associated silaffin kinase from the diatom Thalassiosira pseudonana.
    Sheppard V; Poulsen N; Kröger N
    J Biol Chem; 2010 Jan; 285(2):1166-76. PubMed ID: 19889629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Gene Analysis Focused on Silica Cell Wall Formation: Identification of Diatom-Specific SET Domain Protein Methyltransferases.
    Nemoto M; Iwaki S; Moriya H; Monden Y; Tamura T; Inagaki K; Mayama S; Obuse K
    Mar Biotechnol (NY); 2020 Aug; 22(4):551-563. PubMed ID: 32488507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis.
    Poulsen N; Sumper M; Kröger N
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12075-80. PubMed ID: 14507995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of biosilica morphology and mechanical performance by the conserved diatom gene
    Görlich S; Pawolski D; Zlotnikov I; Kröger N
    Commun Biol; 2019; 2():245. PubMed ID: 31286062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled silica synthesis inspired by diatom silicon biomineralization.
    Vrieling EG; Sun Q; Beelen TP; Hazelaar S; Gieskes WW; van Santen RA; Sommerdijk NA
    J Nanosci Nanotechnol; 2005 Jan; 5(1):68-78. PubMed ID: 15762163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica biomineralization via the self-assembly of helical biomolecules.
    Liu B; Cao Y; Huang Z; Duan Y; Che S
    Adv Mater; 2015 Jan; 27(3):479-97. PubMed ID: 25339438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phase separation model for the nanopatterning of diatom biosilica.
    Sumper M
    Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-driven biomineralization: Comparing silica formation in grass silica cells to other biomineralization processes.
    Kumar S; Natalio F; Elbaum R
    J Struct Biol; 2021 Mar; 213(1):107665. PubMed ID: 33227416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role of ubiquitin in silica biomineralization in diatoms: identification of a homologue with high silica affinity.
    Hazelaar S; van der Strate HJ; Gieskes WW; Vrieling EG
    Biomol Eng; 2003 Jul; 20(4-6):163-9. PubMed ID: 12919793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum.
    Vartanian M; Desclés J; Quinet M; Douady S; Lopez PJ
    New Phytol; 2009; 182(2):429-442. PubMed ID: 19210721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.