These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 36460229)

  • 1. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress.
    Kumar D; Ohri P
    Nitric Oxide; 2023 Jan; 130():36-57. PubMed ID: 36460229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress.
    Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S
    Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions.
    Khan M; Ali S; Al Azzawi TNI; Yun BW
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses.
    Wang Y; Mostafa S; Zeng W; Jin B
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones.
    Singh A; Roychoudhury A
    Plant Cell Rep; 2023 Jun; 42(6):961-974. PubMed ID: 37079058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions.
    Singh S; Kumar V; Kapoor D; Kumar S; Singh S; Dhanjal DS; Datta S; Samuel J; Dey P; Wang S; Prasad R; Singh J
    Physiol Plant; 2020 Feb; 168(2):301-317. PubMed ID: 31264712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation.
    Sati H; Chinchkar AV; Kataria P; Pareek S
    Physiol Plant; 2024; 176(3):e14413. PubMed ID: 38924553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric Oxide, a Key Modulator in the Alleviation of Environmental Stress-Mediated Damage in Crop Plants: A Meta-Analysis.
    Khan M; Al Azzawi TNI; Ali S; Yun BW; Mun BG
    Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sulfide: an emerging component against abiotic stress in plants.
    Raza A; Tabassum J; Mubarik MS; Anwar S; Zahra N; Sharif Y; Hafeez MB; Zhang C; Corpas FJ; Chen H
    Plant Biol (Stuttg); 2022 Jun; 24(4):540-558. PubMed ID: 34870354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide: Roles in plant abiotic stress response and crosstalk with other signals.
    Huang D; Huo J; Liao W
    Plant Sci; 2021 Jan; 302():110733. PubMed ID: 33288031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress.
    Sharma A; Shahzad B; Kumar V; Kohli SK; Sidhu GPS; Bali AS; Handa N; Kapoor D; Bhardwaj R; Zheng B
    Biomolecules; 2019 Jul; 9(7):. PubMed ID: 31319576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses.
    Basit F; Liu J; An J; Chen M; He C; Zhu X; Li Z; Hu J; Guan Y
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):44768-44779. PubMed ID: 34235688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide: A versatile gaseous molecule in plants.
    Arif Y; Hayat S; Yusuf M; Bajguz A
    Plant Physiol Biochem; 2021 Jan; 158():372-384. PubMed ID: 33272793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Sulfide in Plants: Crosstalk with Other Signal Molecules in Response to Abiotic Stresses.
    Wang C; Deng Y; Liu Z; Liao W
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the potential role of hydrogen sulfide and jasmonic acid in plants during heavy metal stress.
    Ali M; Kumar D; Tikoria R; Sharma R; Parkirti P; Vikram V; Kaushal K; Ohri P
    Nitric Oxide; 2023 Nov; 140-141():16-29. PubMed ID: 37696445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide: An emerging warrior of plant physiology under abiotic stress.
    Saini S; Sharma P; Singh P; Kumar V; Yadav P; Sharma A
    Nitric Oxide; 2023 Nov; 140-141():58-76. PubMed ID: 37848156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants.
    Hasanuzzaman M; Bhuyan MHMB; Mahmud JA; Nahar K; Mohsin SM; Parvin K; Fujita M
    Plant Signal Behav; 2018; 13(5):e1477905. PubMed ID: 29939817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment.
    Paul S; Roychoudhury A
    Physiol Plant; 2020 Feb; 168(2):374-393. PubMed ID: 31479515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.