BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36460622)

  • 1. GADRP: graph convolutional networks and autoencoders for cancer drug response prediction.
    Wang H; Dai C; Wen Y; Wang X; Liu W; He S; Bo X; Peng S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36460622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction.
    Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-graph Fusion Graph Convolutional Networks with pseudo-label supervision.
    Yang Y; Sun Y; Ju F; Wang S; Gao J; Yin B
    Neural Netw; 2023 Jan; 158():305-317. PubMed ID: 36493533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep graph convolutional neural network architecture for graph classification.
    Zhou Y; Huo H; Hou Z; Bu F
    PLoS One; 2023; 18(3):e0279604. PubMed ID: 36897837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.
    Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locality preserving dense graph convolutional networks with graph context-aware node representations.
    Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M
    Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration.
    Yin C; Cao Y; Sun P; Zhang H; Li Z; Xu Y; Sun H
    Front Genet; 2022; 13():884028. PubMed ID: 35646077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Transformer for Drug Response Prediction.
    Chu T; Nguyen TT; Hai BD; Nguyen QH; Nguyen T
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1065-1072. PubMed ID: 36107906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders.
    Liao Q; Ye Y; Li Z; Chen H; Zhuo L
    Front Microbiol; 2023; 14():1170559. PubMed ID: 37187536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
    Fan K; Tang S; Gökbağ B; Cheng L; Li L
    Front Genet; 2022; 13():1103092. PubMed ID: 36699450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution.
    Peng W; Chen T; Dai W
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1384-1393. PubMed ID: 34347616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepNC: a framework for drug-target interaction prediction with graph neural networks.
    Tran HNT; Thomas JJ; Ahamed Hassain Malim NH
    PeerJ; 2022; 10():e13163. PubMed ID: 35578674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.