These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36460622)

  • 1. GADRP: graph convolutional networks and autoencoders for cancer drug response prediction.
    Wang H; Dai C; Wen Y; Wang X; Liu W; He S; Bo X; Peng S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36460622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of autoencoder and graph convolutional network for predicting breast cancer drug response.
    Abinas V; Abhinav U; Haneem EM; Vishnusankar A; Nazeer KAA
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450013. PubMed ID: 39051144
    [No Abstract]   [Full Text] [Related]  

  • 3. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction.
    Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-graph Fusion Graph Convolutional Networks with pseudo-label supervision.
    Yang Y; Sun Y; Ju F; Wang S; Gao J; Yin B
    Neural Netw; 2023 Jan; 158():305-317. PubMed ID: 36493533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MMGCN: Multi-modal multi-view graph convolutional networks for cancer prognosis prediction.
    Yang P; Chen W; Qiu H
    Comput Methods Programs Biomed; 2024 Dec; 257():108400. PubMed ID: 39270533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.
    Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BANDRP: a bilinear attention network for anti-cancer drug response prediction based on fingerprint and multi-omics.
    Cao C; Zhao H; Wang J
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39406520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features.
    Saranya KR; Vimina ER
    Comput Biol Chem; 2024 Oct; 112():108175. PubMed ID: 39191166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locality preserving dense graph convolutional networks with graph context-aware node representations.
    Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M
    Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration.
    Yin C; Cao Y; Sun P; Zhang H; Li Z; Xu Y; Sun H
    Front Genet; 2022; 13():884028. PubMed ID: 35646077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph Transformer for Drug Response Prediction.
    Chu T; Nguyen TT; Hai BD; Nguyen QH; Nguyen T
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1065-1072. PubMed ID: 36107906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders.
    Liao Q; Ye Y; Li Z; Chen H; Zhuo L
    Front Microbiol; 2023; 14():1170559. PubMed ID: 37187536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.