BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36460622)

  • 21. HMM-GDAN: Hybrid multi-view and multi-scale graph duplex-attention networks for drug response prediction in cancer.
    Liu Y; Tong S; Chen Y
    Neural Netw; 2023 Oct; 167():213-222. PubMed ID: 37660670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GHNN: Graph Harmonic Neural Networks for semi-supervised graph-level classification.
    Ju W; Luo X; Ma Z; Yang J; Deng M; Zhang M
    Neural Netw; 2022 Jul; 151():70-79. PubMed ID: 35398673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction.
    Chen Y; Zhang L
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38614131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel hybrid framework for metabolic pathways prediction based on the graph attention network.
    Yang Z; Liu J; Shah HA; Feng J
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):329. PubMed ID: 36171550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving drug response prediction based on two-space graph convolution.
    Peng W; Chen T; Liu H; Dai W; Yu N; Lan W
    Comput Biol Med; 2023 May; 158():106859. PubMed ID: 37023539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction.
    Sheng N; Cui H; Zhang T; Xuan P
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32444875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AttenSyn: An Attention-Based Deep Graph Neural Network for Anticancer Synergistic Drug Combination Prediction.
    Wang T; Wang R; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2854-2862. PubMed ID: 37565997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GAE-LGA: integration of multi-omics data with graph autoencoders to identify lncRNA-PCG associations.
    Gao M; Liu S; Qi Y; Guo X; Shang X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graph Convolutional Networks for Drug Response Prediction.
    Nguyen T; Nguyen GTT; Nguyen T; Le DH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):146-154. PubMed ID: 33606633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AGNN: Alternating Graph-Regularized Neural Networks to Alleviate Over-Smoothing.
    Chen Z; Wu Z; Lin Z; Wang S; Plant C; Guo W
    IEEE Trans Neural Netw Learn Syst; 2023 May; PP():. PubMed ID: 37256809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting anticancer hyperfoods with graph convolutional networks.
    Gonzalez G; Gong S; Laponogov I; Bronstein M; Veselkov K
    Hum Genomics; 2021 Jun; 15(1):33. PubMed ID: 34099048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction.
    Zeng D; Zhao C; Quan Z
    Front Genet; 2021; 12():624307. PubMed ID: 33643385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DualGCN: a dual graph convolutional network model to predict cancer drug response.
    Ma T; Liu Q; Li H; Zhou M; Jiang R; Zhang X
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):129. PubMed ID: 35428192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies.
    Lao C; Zheng P; Chen H; Liu Q; An F; Li Z
    BMC Bioinformatics; 2024 Mar; 25(1):105. PubMed ID: 38461284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting cell line-specific synergistic drug combinations through a relational graph convolutional network with attention mechanism.
    Zhang P; Tu S; Zhang W; Xu L
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36136353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.