BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36460623)

  • 41. CREAMMIST: an integrative probabilistic database for cancer drug response prediction.
    Yingtaweesittikul H; Wu J; Mongia A; Peres R; Ko K; Nagarajan N; Suphavilai C
    Nucleic Acids Res; 2023 Jan; 51(D1):D1242-D1248. PubMed ID: 36259664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Against spatial-temporal discrepancy: contrastive learning-based network for surgical workflow recognition.
    Xia T; Jia F
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):839-848. PubMed ID: 33950398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel Multitask Conditional Neural-Network Surrogate Models for Expensive Optimization.
    Luo J; Chen L; Li X; Zhang Q
    IEEE Trans Cybern; 2022 May; 52(5):3984-3997. PubMed ID: 32881702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphology-aware multi-source fusion-based intracranial aneurysms rupture prediction.
    Ou C; Li C; Qian Y; Duan CZ; Si W; Zhang X; Li X; Morgan M; Dou Q; Heng PA
    Eur Radiol; 2022 Aug; 32(8):5633-5641. PubMed ID: 35182202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A model-agnostic framework to enhance knowledge graph-based drug combination prediction with drug-drug interaction data and supervised contrastive learning.
    Gu J; Bang D; Yi J; Lee S; Kim DK; Kim S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CSI: Contrastive data Stratification for Interaction prediction and its application to compound-protein interaction prediction.
    Kalia A; Krishnan D; Hassoun S
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37490457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anticancer drug synergy prediction in understudied tissues using transfer learning.
    Kim Y; Zheng S; Tang J; Jim Zheng W; Li Z; Jiang X
    J Am Med Inform Assoc; 2021 Jan; 28(1):42-51. PubMed ID: 33040150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Drug response prediction using graph representation learning and Laplacian feature selection.
    Xie M; Lei X; Zhong J; Ouyang J; Li G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Retinal OCTA Image Segmentation Based on Global Contrastive Learning.
    Ma Z; Feng D; Wang J; Ma H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores.
    El Khili MR; Memon SA; Emad A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37021933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle.
    Keshavarzi H; Sadeghi-Sefidmazgi A; Mirzaei A; Ravanifard R
    Prev Vet Med; 2020 Feb; 175():104869. PubMed ID: 31896505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance Comparisons of AlexNet and GoogLeNet in Cell Growth Inhibition IC50 Prediction.
    Lee Y; Nam S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep learning of mutation-gene-drug relations from the literature.
    Lee K; Kim B; Choi Y; Kim S; Shin W; Lee S; Park S; Kim S; Tan AC; Kang J
    BMC Bioinformatics; 2018 Jan; 19(1):21. PubMed ID: 29368597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-task learning for the prediction of wind power ramp events with deep neural networks.
    Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C
    Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PDSM-LGCN: Prediction of drug sensitivity associated microRNAs via light graph convolution neural network.
    Deng L; Fan Z; Xu H; Yu S
    Methods; 2022 Sep; 205():106-113. PubMed ID: 35753591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A human-in-the-loop based Bayesian network approach to improve imbalanced radiation outcomes prediction for hepatocellular cancer patients with stereotactic body radiotherapy.
    Luo Y; Cuneo KC; Lawrence TS; Matuszak MM; Dawson LA; Niraula D; Ten Haken RK; El Naqa I
    Front Oncol; 2022; 12():1061024. PubMed ID: 36568208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.