BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36460673)

  • 1. Development of activated carbon for removal of pesticides from water: case study.
    Zieliński B; Miądlicki P; Przepiórski J
    Sci Rep; 2022 Dec; 12(1):20869. PubMed ID: 36460673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorbent selection for pesticides removal from drinking water.
    Alves Pimenta JA; Francisco Fukumoto AA; Madeira TB; Alvarez Mendez MO; Nixdorf SL; Cava CE; Kuroda EK
    Environ Technol; 2022 Apr; 43(11):1672-1683. PubMed ID: 33151819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pesticides removal from water using activated carbons and carbon nanotubes.
    Francisco Fukumoto AA; Alves Pimenta JA; Hirooka EY; Kuroda EK
    Environ Technol; 2024 Jan; 45(3):431-453. PubMed ID: 35959785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of activated carbon fabric for the removal of a recalcitrant pesticide from agricultural run-off.
    Cosgrove S; Jefferson B; Jarvis P
    Sci Total Environ; 2022 Apr; 815():152626. PubMed ID: 35016936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Natural Organic Matter Competition on the Adsorptive Removal of Acetochlor and Metolachlor from Low-Specific UV Absorbance Surface Waters.
    Yilmaz E; Altiparmak E; Dadaser-Celik F; Ates N
    ACS Omega; 2023 Sep; 8(35):31758-31771. PubMed ID: 37692210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties.
    Cougnaud A; Faur C; Le Cloirec P
    Environ Technol; 2005 Aug; 26(8):857-66. PubMed ID: 16128384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced removal of neonicotinoid pesticides present in the Decision 2018/840/EU by new sewage sludge-based carbon materials.
    Sanz-Santos E; Álvarez-Torrellas S; Larriba M; Calleja-Cascajero D; García J
    J Environ Manage; 2022 Jul; 313():115020. PubMed ID: 35398643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the removal of pesticide in agricultural run off by granular activated carbon.
    Jusoh A; Hartini WJ; Ali N; Endut A
    Bioresour Technol; 2011 May; 102(9):5312-8. PubMed ID: 21232934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of sorbent for removing pesticides during water treatment.
    Ignatowicz K
    J Hazard Mater; 2009 Sep; 169(1-3):953-7. PubMed ID: 19446393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply.
    Alves AAA; Ruiz GLO; Nonato TCM; Müller LC; Sens ML
    Environ Technol; 2019 Jun; 40(15):1977-1987. PubMed ID: 29383989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending granular activated carbon (GAC) bed life: A column study of in-situ chemical regeneration of pesticide loaded activated carbon for water treatment.
    Larasati A; Fowler GD; Graham NJD
    Chemosphere; 2022 Jan; 286(Pt 3):131888. PubMed ID: 34418652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant.
    Wang Y; Wang SL; Xie T; Cao J
    Bioresour Technol; 2020 Nov; 316():123929. PubMed ID: 32763805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies.
    Goel J; Kadirvelu K; Rajagopal C; Kumar Garg V
    J Hazard Mater; 2005 Oct; 125(1-3):211-20. PubMed ID: 16019141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticides removal from waste water by activated carbon prepared from waste rubber tire.
    Gupta VK; Gupta B; Rastogi A; Agarwal S; Nayak A
    Water Res; 2011 Jul; 45(13):4047-55. PubMed ID: 21664639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration.
    Wang Y; Lin C; Liu X; Ren W; Huang X; He M; Ouyang W
    Sci Total Environ; 2021 Jul; 778():146353. PubMed ID: 33725597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valorisation of Tectona Grandis tree sawdust through the production of high activated carbon for environment applications.
    Cansado IPDP; Belo CR; Mourão PAM
    Bioresour Technol; 2018 Feb; 249():328-333. PubMed ID: 29054063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic carbon tailored for the removal of polar organic contaminants from water: a solution to the metaldehyde problem?
    Busquets R; Kozynchenko OP; Whitby RL; Tennison SR; Cundy AB
    Water Res; 2014 Sep; 61():46-56. PubMed ID: 24880244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.
    Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A
    J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergy optimization for the removal of dye and pesticides from drinking water using granular activated carbon particles in a 3D electrochemical reactor.
    Ghanbarlou H; Pedersen NL; Nikbakht Fini M; Muff J
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22206-22213. PubMed ID: 32086734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and removal of phenoxy acetic herbicides from water by using commercial activated carbons: experimental and computational studies.
    Spaltro A; Pila M; Simonetti S; Álvarez-Torrellas S; Rodríguez JG; Ruiz D; Compañy AD; Juan A; Allegretti P
    J Contam Hydrol; 2018 Nov; 218():84-93. PubMed ID: 30342836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.