BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36461130)

  • 1. Injectable PTHF-based thermogelling polyurethane implants for long-term intraocular application.
    Zhang K; Liu Z; Lin Q; Boo YJ; Ow V; Zhao X; Wong DSL; Lim JYC; Xue K; Su X; Wu D; Loh XJ
    Biomater Res; 2022 Dec; 26(1):70. PubMed ID: 36461130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new highly transparent injectable PHA-based thermogelling vitreous substitute.
    Xue K; Liu Z; Jiang L; Kai D; Li Z; Su X; Loh XJ
    Biomater Sci; 2020 Feb; 8(3):926-936. PubMed ID: 31833480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCL-Based Thermogelling Polymer: Molecular Weight Effects on Its Suitability as Vitreous Tamponade.
    Xue K; Liu Z; Lin Q; Lim JYC; Tang KY; Wong SL; Parikh BH; Su X; Loh XJ
    ACS Appl Bio Mater; 2020 Dec; 3(12):9043-9053. PubMed ID: 35019581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions.
    Wang T; Ran R; Ma Y; Zhang M
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High molecular weight hyper-branched PCL-based thermogelling vitreous endotamponades.
    Lin Q; Liu Z; Wong DSL; Lim CC; Liu CK; Guo L; Zhao X; Boo YJ; Wong JHM; Tan RPT; Xue K; Lim JYC; Su X; Loh XJ
    Biomaterials; 2022 Jan; 280():121262. PubMed ID: 34810039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rabbit study of an in situ forming hydrogel vitreous substitute.
    Swindle-Reilly KE; Shah M; Hamilton PD; Eskin TA; Kaushal S; Ravi N
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4840-6. PubMed ID: 19324846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desired properties of polymeric hydrogel vitreous substitute.
    Qu S; Tang Y; Ning Z; Zhou Y; Wu H
    Biomed Pharmacother; 2024 Mar; 172():116154. PubMed ID: 38306844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(carbonate urethane)-Based Thermogels with Enhanced Drug Release Efficacy for Chemotherapeutic Applications.
    Chan BQY; Cheng H; Liow SS; Dou Q; Wu YL; Loh XJ; Li Z
    Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly transparent tri-polymer complex
    Yadav I; Purohit SD; Singh H; Das N; Roy P; Mishra NC
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34525462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes.
    Yu S; Wang S; Xia L; Hu H; Zou M; Jiang Z; Chi J; Zhang Y; Li H; Yang C; Liu W; Han B
    Int J Biol Macromol; 2022 May; 208():159-171. PubMed ID: 35301003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release.
    Lee SY; Jeon SI; Sim SB; Byun Y; Ahn CH
    Acta Biomater; 2021 Sep; 131():286-301. PubMed ID: 34246803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEG-based thermosensitive and biodegradable hydrogels.
    Shi J; Yu L; Ding J
    Acta Biomater; 2021 Jul; 128():42-59. PubMed ID: 33857694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel vitreous substitutes: the next frontier in vitreoretinal surgery.
    Schulz A; Januschowski K; Szurman P
    Curr Opin Ophthalmol; 2021 May; 32(3):288-293. PubMed ID: 33630788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications.
    Yuan M; Bi B; Huang J; Zhuo R; Jiang X
    Carbohydr Polym; 2018 Jul; 192():10-18. PubMed ID: 29691000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications.
    Zhang K; Xue K; Loh XJ
    Gels; 2021 Jun; 7(3):. PubMed ID: 34202514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an injectable in situ gelation biomaterials for vitreous substitute.
    Annaka M; Mortensen K; Vigild ME; Matsuura T; Tsuji S; Ueda T; Tsujinaka H
    Biomacromolecules; 2011 Nov; 12(11):4011-21. PubMed ID: 21988210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery.
    Song X; Zhang Z; Zhu J; Wen Y; Zhao F; Lei L; Phan-Thien N; Khoo BC; Li J
    Biomacromolecules; 2020 Apr; 21(4):1516-1527. PubMed ID: 32159339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z; Zhang Z; Liu KL; Ni X; Li J
    Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture.
    Liu H; Liu J; Qi C; Fang Y; Zhang L; Zhuo R; Jiang X
    Acta Biomater; 2016 Apr; 35():228-37. PubMed ID: 26911882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.