These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 36461212)
1. Authenticity analysis of oregano: development, validation and fitness for use of several food fingerprinting techniques. Van De Steene J; Ruyssinck J; Fernandez-Pierna JA; Vandermeersch L; Maes A; Van Langenhove H; Walgraeve C; Demeestere K; De Meulenaer B; Jacxsens L; Miserez B Food Res Int; 2022 Dec; 162(Pt A):111962. PubMed ID: 36461212 [TBL] [Abstract][Full Text] [Related]
2. Critical evaluation of ambient mass spectrometry coupled with chemometrics for the early detection of adulteration scenarios in Origanum vulgare L. Damiani T; Dreolin N; Stead S; Dall'Asta C Talanta; 2021 May; 227():122116. PubMed ID: 33714458 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Black C; Haughey SA; Chevallier OP; Galvin-King P; Elliott CT Food Chem; 2016 Nov; 210():551-7. PubMed ID: 27211681 [TBL] [Abstract][Full Text] [Related]
5. Geographical discrimination of Paw San rice cultivated in different regions of Myanmar using near-infrared spectroscopy, headspace-gas chromatography-ion mobility spectrometry and chemometrics. Thantar S; Mihailova A; Islam MD; Maxwell F; Hamed I; Vlachou C; Kelly SD Talanta; 2024 Jun; 273():125910. PubMed ID: 38492284 [TBL] [Abstract][Full Text] [Related]
6. Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study. Wielogorska E; Chevallier O; Black C; Galvin-King P; Delêtre M; Kelleher CT; Haughey SA; Elliott CT Food Chem; 2018 Jan; 239():32-39. PubMed ID: 28873575 [TBL] [Abstract][Full Text] [Related]
7. Differentiating organically and conventionally grown oregano using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), headspace gas chromatography with flame ionization detection (headspace-GC-FID), and flow injection mass spectrum (FIMS) fingerprints combined with multivariate data analysis. Gao B; Qin F; Ding T; Chen Y; Lu W; Yu LL J Agric Food Chem; 2014 Aug; 62(32):8075-84. PubMed ID: 25050447 [TBL] [Abstract][Full Text] [Related]
8. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
9. Volatile compounds profiling by using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The case study of dark chocolates organoleptic differences. Deuscher Z; Andriot I; Sémon E; Repoux M; Preys S; Roger JM; Boulanger R; Labouré H; Le Quéré JL J Mass Spectrom; 2019 Jan; 54(1):92-119. PubMed ID: 30478865 [TBL] [Abstract][Full Text] [Related]
11. Thermal desorption direct analysis in real-time high-resolution mass spectrometry and machine learning allow the rapid authentication of ground black pepper and dried oregano: A proof-of-concept study. Zacometti C; Massaro A; di Gioia T; Lefevre S; Frégière-Salomon A; Lafeuille JL; Fiordaliso Candalino I; Suman M; Piro R; Tata A J Mass Spectrom; 2023 Oct; 58(10):e4953. PubMed ID: 37401136 [TBL] [Abstract][Full Text] [Related]
12. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS). Del Pulgar JS; Soukoulis C; Biasioli F; Cappellin L; García C; Gasperi F; Granitto P; Märk TD; Piasentier E; Schuhfried E Talanta; 2011 Jul; 85(1):386-93. PubMed ID: 21645714 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of ED-XRF for the detection of inorganic adulterants in turmeric, paprika and oregano. Cottenet G; Andrey D; Dubascoux S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 May; 41(5):461-467. PubMed ID: 38478009 [TBL] [Abstract][Full Text] [Related]
14. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection. Amirvaresi A; Nikounezhad N; Amirahmadi M; Daraei B; Parastar H Food Chem; 2021 May; 344():128647. PubMed ID: 33229154 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food. Ye H; Yang J; Xiao G; Zhao Y; Li Z; Bai W; Zeng X; Dong H Food Chem; 2023 Feb; 402():134216. PubMed ID: 36152561 [TBL] [Abstract][Full Text] [Related]
16. Classification of 7 monofloral honey varieties by PTR-ToF-MS direct headspace analysis and chemometrics. Schuhfried E; Sánchez del Pulgar J; Bobba M; Piro R; Cappellin L; Märk TD; Biasioli F Talanta; 2016 Jan; 147():213-9. PubMed ID: 26592598 [TBL] [Abstract][Full Text] [Related]
17. The potential of handheld near infrared spectroscopy to detect food adulteration: Results of a global, multi-instrument inter-laboratory study. McGrath TF; Haughey SA; Islam M; Elliott CT; Food Chem; 2021 Aug; 353():128718. PubMed ID: 33838431 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Spectroscopic Techniques Combined with Chemometrics for Cocaine Powder Analysis. Eliaerts J; Meert N; Dardenne P; Baeten V; Pierna JF; Van Durme F; De Wael K; Samyn N J Anal Toxicol; 2020 Dec; 44(8):851-860. PubMed ID: 33313888 [TBL] [Abstract][Full Text] [Related]
19. A rapid food chain approach for authenticity screening: The development, validation and transferability of a chemometric model using two handheld near infrared spectroscopy (NIRS) devices. McVey C; McGrath TF; Haughey SA; Elliott CT Talanta; 2021 Jan; 222():121533. PubMed ID: 33167241 [TBL] [Abstract][Full Text] [Related]
20. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Capozzi V; Lonzarich V; Khomenko I; Cappellin L; Navarini L; Biasioli F Molecules; 2020 Mar; 25(5):. PubMed ID: 32164157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]