These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 36461275)
1. Dual-modified starch nanoparticles containing aromatic systems with highly efficient encapsulation of curcumin and their antibacterial applications. Wang R; Qin X; Du Y; Shan Z; Shi C; Huang K; Wang J; Zhi K Food Res Int; 2022 Dec; 162(Pt A):111926. PubMed ID: 36461275 [TBL] [Abstract][Full Text] [Related]
2. Efficient encapsulation of fat-soluble food-derived biofunctional substances (curcumin as an example) in dual-modified starch-based nanoparticles containing large conjugated systems. Du Y; Chu J; Wang R; Zhang C; Zhang J; Zhi K Int J Biol Macromol; 2023 Jul; 242(Pt 3):125078. PubMed ID: 37230443 [TBL] [Abstract][Full Text] [Related]
3. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Chen S; Wu J; Tang Q; Xu C; Huang Y; Huang D; Luo F; Wu Y; Yan F; Weng Z; Wang S Carbohydr Polym; 2020 Jan; 228():115398. PubMed ID: 31635734 [TBL] [Abstract][Full Text] [Related]
4. Enhanced bioavailability of curcumin amorphous nanocomposite prepared by a green process using modified starch. Chen C; Wang Z; Fu H; Yu G; Luo X; Zhu K Int J Biol Macromol; 2024 Jun; 270(Pt 1):132210. PubMed ID: 38729473 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles. Alizadeh N; Malakzadeh S Int J Biol Macromol; 2020 Mar; 147():778-791. PubMed ID: 31982535 [TBL] [Abstract][Full Text] [Related]
6. Dual-modified starch nanospheres encapsulated with curcumin by self-assembly: Structure, physicochemical properties and anti-inflammatory activity. Zhi K; Yang H; Shan Z; Huang K; Zhang M; Xia X Int J Biol Macromol; 2021 Nov; 191():305-314. PubMed ID: 34560146 [TBL] [Abstract][Full Text] [Related]
7. Curcumin-Loaded Hybrid Nanoparticles: Microchannel-Based Preparation and Antitumor Activity in a Mouse Model. Hong W; Gao Y; Lou B; Ying S; Wu W; Ji X; Yu N; Jiao Y; Wang H; Zhou X; Li A; Guo F; Yang G Int J Nanomedicine; 2021; 16():4147-4159. PubMed ID: 34168445 [TBL] [Abstract][Full Text] [Related]
8. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. Hong W; Guo F; Yu N; Ying S; Lou B; Wu J; Gao Y; Ji X; Wang H; Li A; Wang G; Yang G Drug Des Devel Ther; 2021; 15():2843-2855. PubMed ID: 34234415 [TBL] [Abstract][Full Text] [Related]
9. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. Sun L; Liu Z; Wang L; Cun D; Tong HHY; Yan R; Chen X; Wang R; Zheng Y J Control Release; 2017 May; 254():44-54. PubMed ID: 28344018 [TBL] [Abstract][Full Text] [Related]
10. Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology. Wu W; Wu J; Fu Q; Jin C; Guo F; Yan Q; Yang Q; Wu D; Yang Y; Yang G Int J Nanomedicine; 2019; 14():4683-4695. PubMed ID: 31308653 [No Abstract] [Full Text] [Related]
11. Poly(D,L-lactic acid)-glycerol-based nanoparticles for curcumin delivery. Yoon IS; Park JH; Kang HJ; Choe JH; Goh MS; Kim DD; Cho HJ Int J Pharm; 2015 Jul; 488(1-2):70-7. PubMed ID: 25900098 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent Carbon Dot-Curcumin Nanocomposites for Remarkable Antibacterial Activity with Synergistic Photodynamic and Photothermal Abilities. Yan H; Zhang B; Zhang Y; Su R; Li P; Su W ACS Appl Bio Mater; 2021 Sep; 4(9):6703-6718. PubMed ID: 35006973 [TBL] [Abstract][Full Text] [Related]
14. Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. Zhang H; Zhang Y; Chen Y; Zhang Y; Wang Y; Zhang Y; Song L; Jiang B; Su G; Li Y; Hou Z Int J Pharm; 2018 Oct; 549(1-2):230-238. PubMed ID: 30071310 [TBL] [Abstract][Full Text] [Related]
15. Photo-enhanced antibacterial activity of polydopamine-curcumin nanocomposites with excellent photodynamic and photothermal abilities. Su R; Yan H; Li P; Zhang B; Zhang Y; Su W Photodiagnosis Photodyn Ther; 2021 Sep; 35():102417. PubMed ID: 34186263 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Effect of Self-Assembled Curcumin and Piperine Co-Loaded Human Serum Albumin Nanoparticles on Suppressing Cancer Cells. Abolhassani H; Safavi MS; Handali S; Nosrati M; Shojaosadati SA Drug Dev Ind Pharm; 2020 Oct; 46(10):1647-1655. PubMed ID: 32892656 [TBL] [Abstract][Full Text] [Related]
17. Dual functional matrix metalloproteinase-responsive curcumin-loaded nanoparticles for tumor-targeted treatment. Guo F; Fu Q; Jin C; Ji X; Yan Q; Yang Q; Wu D; Gao Y; Hong W; Li A; Yang G Drug Deliv; 2019 Dec; 26(1):1027-1038. PubMed ID: 31691601 [TBL] [Abstract][Full Text] [Related]
18. Excogitation and Assessment of Curcumin-Vitamin E Self-assembly PEGylated Nanoparticles by the Route of Oral Administration. Huang Z; Chen X; Li Y; Zhai J; Ma Y J Pharm Sci; 2021 Jan; 110(1):146-154. PubMed ID: 32979362 [TBL] [Abstract][Full Text] [Related]
19. High-Payload Buccal Delivery System of Amorphous Curcumin-Chitosan Nanoparticle Complex in Hydroxypropyl Methylcellulose and Starch Films. Lim LM; Hadinoto K Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502305 [TBL] [Abstract][Full Text] [Related]
20. Stimulus-responsive starch-based nanocapsules for targeted delivery and antibacterial applications. Meng Q; Zhou L; Zhong S; Wang J; Wang J; Gao Y; Cui X Int J Biol Macromol; 2023 Jun; 241():124664. PubMed ID: 37119911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]