These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36461430)

  • 21. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction.
    Su WJ; Wang ZS
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of L-Shaped and U-Shaped Beams in Bidirectional Piezoelectric Vibration Energy Harvesting.
    Jiang W; Wang L; Wang X; Zhao L; Fang X; Maeda R
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field.
    Chen CD; Wu YH; Su PW
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic Characteristics and Experimental Research of Linear-Arch Bi-Stable Piezoelectric Energy Harvester.
    Zhang X; Zhu F; Chen L; Chen X; Guo Y; Xu H
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Self-Propelled Mechanism to Increase Range of Bistable Operation of a Piezoelectric Cantilever-Based Vibration Energy Harvester.
    Singh KA; Pathak M; Weber RJ; Kumar R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2184-2194. PubMed ID: 30106722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical and Experimental Studies on MEMS Variable Cross-Section Cantilever Beam Based Piezoelectric Vibration Energy Harvester.
    He X; Li D; Zhou H; Hui X; Mu X
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34208991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harvesting Variable-Speed Wind Energy with a Dynamic Multi-Stable Configuration.
    Wang Y; Zhou Z; Liu Q; Qin W; Zhu P
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32204348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient.
    Zhou N; Li R; Ao H; Zhang C; Jiang H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.
    Leung CM; Wang Y; Chen W
    Rev Sci Instrum; 2016 Nov; 87(11):114705. PubMed ID: 27910368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics.
    Qichang Z; Yang Y; Wei W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bidirectional Piezoelectric Energy Harvester.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31489888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Piezoelectric Heterostructure Scavenging Mechanical Energy from Human Foot Strikes.
    He W
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.