These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36461453)
1. Conceptual design of a heavy ion beam probe diagnostic for the Wendelstein 7-X Stellarator. Trimino Mora H; Crowley TP; Demers DR; Fimognari PJ; Grulke O; Laube R Rev Sci Instrum; 2022 Nov; 93(11):113309. PubMed ID: 36461453 [TBL] [Abstract][Full Text] [Related]
2. Heavy ion beam probe for Wendelstein 7-X measurement capabilities as projected through its design. Demers DR; Crowley TP; Fimognari PJ; Mora HT; Grulke O; Laube R Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39212503 [TBL] [Abstract][Full Text] [Related]
3. Simulation of a scintillator-based fast ion loss detector for steady-state operation in Wendelstein 7-X (invited). LeViness A; Lazerson SA; Jansen van Vuuren A; Rueda-Rueda J; Ayllon-Guerola J; Bozhenkov S; Corl D; Ellis R; Galdon-Quiroga J; Garcia-Dominguez J; Garcia-Munoz M; Hidalgo-Salaverri J; Ogawa K; Pablant N; Segado-Fernandez J; Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39037298 [TBL] [Abstract][Full Text] [Related]
4. Improvement in the spatial resolution of heavy ion beam probe measurements through application of ion optics. Crowley TP; Demers DR; Fimognari PJ Rev Sci Instrum; 2021 Jan; 92(1):013503. PubMed ID: 33514219 [TBL] [Abstract][Full Text] [Related]
6. Conceptual design and performance predictions for 2D beam emission spectroscopy turbulence measurements at Wendelstein 7-X. Smith DR; McKee G; Den Hartog D; Geiger B; Grulke O; Han X; Jaehnig K; Seyfert C; Windisch T Rev Sci Instrum; 2022 Jul; 93(7):073506. PubMed ID: 35922327 [TBL] [Abstract][Full Text] [Related]
7. Conceptual design of a heavy ion beam probe for the QUEST spherical tokamak. Ido T; Hasegawa M; Ikezoe R; Onchi T; Hanada K; Idei H; Kuroda K; Nagashima Y Rev Sci Instrum; 2022 Nov; 93(11):113516. PubMed ID: 36461548 [TBL] [Abstract][Full Text] [Related]
8. Realization of a gas puff imaging system on the Wendelstein 7-X stellarator. Terry JL; von Stechow A; Baek SG; Ballinger SB; Grulke O; von Sehren C; Laube R; Killer C; Scharmer F; Brunner KJ; Knauer J; Bois S; Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39254433 [TBL] [Abstract][Full Text] [Related]
9. Heavy ion beam probe coordinate mapping and calibration at WEGA stellarator. Podoba Y; Otte M; Wagner F; Krupnik L; Zhezhera A Rev Sci Instrum; 2010 Jan; 81(1):013505. PubMed ID: 20113098 [TBL] [Abstract][Full Text] [Related]
10. Conceptual design of heavy ion beam probes on the PLATO tokamak. Ido T; Fujisawa A; Takemura K; Kobayashi TK; Nishimura D; Kasuya N; Fukuyama A; Moon C; Yamasaki K; Inagaki S; Nagashima Y; Yamada T Rev Sci Instrum; 2021 May; 92(5):053553. PubMed ID: 34243249 [TBL] [Abstract][Full Text] [Related]
11. Identification of an Optimized Heating and Fast Ion Generation Scheme for the Wendelstein 7-X Stellarator. Patten HW; Graves JP; Cooper WA; Eriksson J; Pfefferlé D; ; Phys Rev Lett; 2020 Apr; 124(15):155001. PubMed ID: 32357043 [TBL] [Abstract][Full Text] [Related]
12. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP (invited). Demers DR; Fimognari PJ Rev Sci Instrum; 2012 Oct; 83(10):10D711. PubMed ID: 23126885 [TBL] [Abstract][Full Text] [Related]
13. A new multi-channel Mach probe measuring the radial ion flow velocity profile in the boundary plasma of the W7-X stellarator. Cai J; Liang Y; Killer C; Liu S; Hiller A; Knieps A; Schweer B; Höschen D; Nicolai D; Offermanns G; Satheeswaran G; Henkel M; Hollfeld K; Grulke O; Drews P; Krings T; Li Y Rev Sci Instrum; 2019 Mar; 90(3):033502. PubMed ID: 30927788 [TBL] [Abstract][Full Text] [Related]
14. Overview of the Wendelstein 7-X phase contrast imaging diagnostic. Edlund EM; Porkolab M; Huang Z; Grulke O; Böttger LG; von Sehren C; von Stechow A Rev Sci Instrum; 2018 Oct; 89(10):10E105. PubMed ID: 30399800 [TBL] [Abstract][Full Text] [Related]
15. Heavy ion beam probe operation in time varying equilibria of improved confinement reversed field pinch discharges. Demers DR; Chen X; Schoch PM; Fimognari PJ Rev Sci Instrum; 2010 Oct; 81(10):10E109. PubMed ID: 21033974 [TBL] [Abstract][Full Text] [Related]
16. Status of the heavy ion beam probe system in the Large Helical Device. Nishiura M; Ido T; Shimizu A; Nakano H; Kato T; Kato S; Hamada Y; Shevelko VP; Janev RK; Wada M Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02C713. PubMed ID: 18315266 [TBL] [Abstract][Full Text] [Related]
17. Demonstration of reduced neoclassical energy transport in Wendelstein 7-X. Beidler CD; Smith HM; Alonso A; Andreeva T; Baldzuhn J; Beurskens MNA; Borchardt M; Bozhenkov SA; Brunner KJ; Damm H; Drevlak M; Ford OP; Fuchert G; Geiger J; Helander P; Hergenhahn U; Hirsch M; Höfel U; Kazakov YO; Kleiber R; Krychowiak M; Kwak S; Langenberg A; Laqua HP; Neuner U; Pablant NA; Pasch E; Pavone A; Pedersen TS; Rahbarnia K; Schilling J; Scott ER; Stange T; Svensson J; Thomsen H; Turkin Y; Warmer F; Wolf RC; Zhang D; Nature; 2021 Aug; 596(7871):221-226. PubMed ID: 34381232 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of the neutron production at the Wendelstein 7-X stellarator. Wiegel B; Schneider W; Grünauer F; Burhenn R; Schuhmacher H; Zimbal A Radiat Prot Dosimetry; 2014 Oct; 161(1-4):326-30. PubMed ID: 24162373 [TBL] [Abstract][Full Text] [Related]
19. Multi-delay coherence imaging spectroscopy optimized for ion temperature measurements in the divertor plasma of the Wendelstein 7-X stellarator. Kriete DM; Perseo V; Gradic D; Ennis DA; König R; Maurer DA; Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 38949465 [TBL] [Abstract][Full Text] [Related]
20. Reduction or Enhancement of Stellarator Turbulence by Impurities. García-Regaña JM; Calvo I; Parra FI; Thienpondt H Phys Rev Lett; 2024 Sep; 133(10):105101. PubMed ID: 39303262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]