These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36461484)

  • 1. Data-driven fractional order feedback and model-less feedforward control of a XY reluctance-actuated micropositioning stage.
    Zhang X; Lai L; Li P; Zhu LM
    Rev Sci Instrum; 2022 Nov; 93(11):115002. PubMed ID: 36461484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and tracking control of dielectric elastomer actuators based on fractional calculus.
    Wu J; Xu Z; Zhang Y; Su CY; Wang Y
    ISA Trans; 2023 Jul; 138():687-695. PubMed ID: 36792481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, modeling, and control of a long stroke compliant tip-tilt-piston micropositioning stage driven by voice coil motors.
    Li P; Chen Y; Xie C; Xu Z; Lai L; Zhu L
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 38980133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Compound Control Based on the Piezo-Actuated Stage with Bouc-Wen Model.
    Fang J; Wang J; Li C; Zhong W; Long Z
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and testing of a novel multi-stroke micropositioning system with variable resolutions.
    Xu Q
    Rev Sci Instrum; 2014 Feb; 85(2):025002. PubMed ID: 24593389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global fast non-singular terminal sliding-mode control for high-speed nanopositioning.
    Wang G; Zhou Y; Ni L; Aphale SS
    ISA Trans; 2023 May; 136():560-570. PubMed ID: 36372602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
    Li P; Yan F; Ge C; Zhang M
    Rev Sci Instrum; 2012 Aug; 83(8):085114. PubMed ID: 22938339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damping and tracking control of nanopositioning stages with double delayed position feedback.
    Xu S; Liu P
    Rev Sci Instrum; 2021 Oct; 92(10):103706. PubMed ID: 34717378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Compound PID Control Strategy Based on Input Feedforward and Dynamic Compensation Applied in Noncircular Turning.
    Zhang Y; Huang Y; Wang Y
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties.
    Aphale SS; Devasia S; Reza Moheimani SO
    Nanotechnology; 2008 Mar; 19(12):125503. PubMed ID: 21817730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning.
    Wang T; San-Millan A; Aphale SS
    ISA Trans; 2024 Apr; 147():153-162. PubMed ID: 38302314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
    Gu G; Zhu L
    Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-time adaptive sliding mode control for high-precision tracking of piezo-actuated stages.
    Wang Z; Xu R; Wang L; Tian D
    ISA Trans; 2022 Oct; 129(Pt A):436-445. PubMed ID: 34974911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Tracking Control for the Piezoelectric Actuated Stage Using the Krasnosel'skii-Pokrovskii Operator.
    Xu R; Tian D; Wang Z
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32466151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compound Control of Trajectory Errors in a Non-Resonant Piezo-Actuated Elliptical Vibration Cutting Device.
    Zhang C; Shu Z; Yuan Y; Gan X; Yu F
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.
    Zhou M; Zhang Q; Wang J
    PLoS One; 2014; 9(5):e97086. PubMed ID: 24828010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Bandwidth Repetitive Trajectory Tracking Control of Piezoelectric Actuators via Phase-Hysteresis Hybrid Compensation and Feedforward-Feedback Combined Control.
    Yuan J; Wu H; Qin Y; Han J
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling.
    Qin Y; Zhang Y; Duan H; Han J
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model.
    An D; Li H; Xu Y; Zhang L
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model.
    Li W; Chen X; Li Z
    Rev Sci Instrum; 2013 Nov; 84(11):115003. PubMed ID: 24289430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.