These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36461504)

  • 21. Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum.
    Brzobohatý O; Duchaň M; Jákl P; Ježek J; Šiler M; Zemánek P; Simpson SH
    Nat Commun; 2023 Sep; 14(1):5441. PubMed ID: 37673926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical Trap Loading of Dielectric Microparticles In Air.
    Park H; LeBrun TW
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28190055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cavity cooling a single charged levitated nanosphere.
    Millen J; Fonseca PZ; Mavrogordatos T; Monteiro TS; Barker PF
    Phys Rev Lett; 2015 Mar; 114(12):123602. PubMed ID: 25860743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sub-Kelvin Feedback Cooling and Heating Dynamics of an Optically Levitated Librator.
    van der Laan F; Tebbenjohanns F; Reimann R; Vijayan J; Novotny L; Frimmer M
    Phys Rev Lett; 2021 Sep; 127(12):123605. PubMed ID: 34597065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and Operation of a Nano-Optical Conveyor Belt.
    Ryan J; Zheng Y; Hansen P; Hesselink L
    J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Printed-circuit-board linear Paul trap for manipulating single nano- and microparticles.
    Partner HL; Zoll J; Kuhlicke A; Benson O
    Rev Sci Instrum; 2018 Aug; 89(8):083101. PubMed ID: 30184697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Background-free imaging of cold atoms in optical traps.
    Li L; Liu Y; Zhou X; Huang D; Shen Z; He S; Wang J; Li C; Guo G
    Opt Express; 2024 Jun; 32(12):21988-21995. PubMed ID: 38859539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multistage two-dimensional magneto-optical trap as a compact cold atom beam source.
    Ramirez-Serrano J; Yu N; Kohel JM; Kellogg JR; Maleki L
    Opt Lett; 2006 Mar; 31(6):682-4. PubMed ID: 16544589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles.
    Haro-González P; del Rosal B; Maestro LM; Rodríguez EM; Naccache R; Capobianco JA; Dholakia K; Solé JG; Jaque D
    Nanoscale; 2013 Dec; 5(24):12192-9. PubMed ID: 24132346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms.
    Füzesi F; Jornod A; Thomann P; Plimmer MD; Dudle G; Moser R; Sache L; Bleuler H
    Rev Sci Instrum; 2007 Oct; 78(10):103109. PubMed ID: 17979408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryogenic linear Paul trap for cold highly charged ion experiments.
    Schwarz M; Versolato OO; Windberger A; Brunner FR; Ballance T; Eberle SN; Ullrich J; Schmidt PO; Hansen AK; Gingell AD; Drewsen M; López-Urrutia JR
    Rev Sci Instrum; 2012 Aug; 83(8):083115. PubMed ID: 22938282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High precision and continuous optical transport using a standing wave optical line trap.
    Demergis V; Florin EL
    Opt Express; 2011 Oct; 19(21):20833-48. PubMed ID: 21997093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a Tandem Electrodynamic Trap Apparatus for Merging Charged Droplets and Spectroscopic Characterization of Resultant Dried Particles.
    Kohno JY; Higashiura T; Eguchi T; Miura S; Ogawa M
    J Phys Chem B; 2016 Aug; 120(31):7696-703. PubMed ID: 27438227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced observation time of magneto-optical traps using micro-machined non-evaporable getter pumps.
    Boudot R; McGilligan JP; Moore KR; Maurice V; Martinez GD; Hansen A; de Clercq E; Kitching J
    Sci Rep; 2020 Oct; 10(1):16590. PubMed ID: 33024172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-temperature Bessel beam trap for single submicrometer aerosol particle studies.
    Lu JW; Isenor M; Chasovskikh E; Stapfer D; Signorell R
    Rev Sci Instrum; 2014 Sep; 85(9):095107. PubMed ID: 25273772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production and characterization of a dual species magneto-optical trap of cesium and ytterbium.
    Kemp SL; Butler KL; Freytag R; Hopkins SA; Hinds EA; Tarbutt MR; Cornish SL
    Rev Sci Instrum; 2016 Feb; 87(2):023105. PubMed ID: 26931832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryogenic ion trapping systems with surface-electrode traps.
    Antohi PB; Schuster D; Akselrod GM; Labaziewicz J; Ge Y; Lin Z; Bakr WS; Chuang IL
    Rev Sci Instrum; 2009 Jan; 80(1):013103. PubMed ID: 19191425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using optical landscapes to control, direct and isolate aerosol particles.
    Wills JB; Butler JR; Palmer J; Reid JP
    Phys Chem Chem Phys; 2009 Sep; 11(36):8015-20. PubMed ID: 19727508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interference of the scattered vector light fields from two optically levitated nanoparticles.
    Jin Y; Yan J; Jee Rahman S; Yu X; Zhang J
    Opt Express; 2022 May; 30(11):20026-20037. PubMed ID: 36221763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-Field GHz Rotation and Sensing with an Optically Levitated Nanodumbbell.
    Ju P; Jin Y; Shen K; Duan Y; Xu Z; Gao X; Ni X; Li T
    Nano Lett; 2023 Nov; 23(22):10157-10163. PubMed ID: 37909774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.