These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36461557)

  • 1. High resolution diagnostic tools for superconducting radio frequency cavities.
    Parajuli I; Ciovati G; Delayen JR
    Rev Sci Instrum; 2022 Nov; 93(11):113305. PubMed ID: 36461557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field sensors for detection of trapped flux in superconducting radio frequency cavities.
    Parajuli IP; Ciovati G; Delayen JR
    Rev Sci Instrum; 2021 Oct; 92(10):104705. PubMed ID: 34717418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic evaluation of magnetic sensitivities of anisotropic magnetoresistive sensors at liquid helium temperature for superconducting cavities.
    Okada T; Kako E; Konomi T; Masuzawa M; Sakai H; Tsuchiya K; Ueki R; Umemori K; Pizzol P; Poudel A; Tajima T
    Rev Sci Instrum; 2021 Mar; 92(3):035003. PubMed ID: 33820008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetometric mapping of superconducting RF cavities.
    Schmitz B; Köszegi J; Alomari K; Kugeler O; Knobloch J
    Rev Sci Instrum; 2018 May; 89(5):054706. PubMed ID: 29864856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators.
    Senevirathne IH; Gurevich A; Delayen JR
    Rev Sci Instrum; 2022 May; 93(5):055104. PubMed ID: 35649811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence of microstructure dependence of magnetic flux trapping in niobium.
    Balachandran S; Polyanskii A; Chetri S; Dhakal P; Su YF; Sung ZH; Lee PJ
    Sci Rep; 2021 Mar; 11(1):5364. PubMed ID: 33686195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.
    Dhakal P; Ciovati G; Rigby W; Wallace J; Myneni GR
    Rev Sci Instrum; 2012 Jun; 83(6):065105. PubMed ID: 22755660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of Nb
    Sundahl C; Makita J; Welander PB; Su YF; Kametani F; Xie L; Zhang H; Li L; Gurevich A; Eom CB
    Sci Rep; 2021 Apr; 11(1):7770. PubMed ID: 33833275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radio Frequency Magnetic Field Limits of Nb and Nb_{3}Sn.
    Posen S; Valles N; Liepe M
    Phys Rev Lett; 2015 Jul; 115(4):047001. PubMed ID: 26252705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-mode analysis of surface losses in a superconducting microwave resonator in high magnetic fields.
    Braine T; Rybka G; Baker AA; Brodsky J; Carosi G; Du N; Woollett N; Knirck S; Jones M;
    Rev Sci Instrum; 2023 Mar; 94(3):033102. PubMed ID: 37012755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconducting radio-frequency virtual cavity for control algorithms debugging.
    Echevarria P; Aldekoa E; Jugo J; Neumann A; Ushakov A; Knobloch J
    Rev Sci Instrum; 2018 Aug; 89(8):084706. PubMed ID: 30184624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.
    Ahmed S; Mammosser JD
    Rev Sci Instrum; 2015 Jul; 86(7):073303. PubMed ID: 26233368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes.
    Romanenko A; Schuster DI
    Phys Rev Lett; 2017 Dec; 119(26):264801. PubMed ID: 29328733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Superconducting Cavity using Superconducting Quantum Interference Device Metamaterials.
    Kim S; Shrekenhamer D; McElroy K; Strikwerda A; Alldredge J
    Sci Rep; 2019 Mar; 9(1):4630. PubMed ID: 30874574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect detection inside superconducting 1.3 GHz cavities by means of x-ray fluorescence spectroscopy.
    Bertucci M; Michelato P; Moretti M; Navitski A; Pagani C
    Rev Sci Instrum; 2016 Jan; 87(1):013103. PubMed ID: 26827305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification at Jefferson Laboratory.
    Vidyaratne L; Carpenter A; Powers T; Tennant C; Iftekharuddin KM; Rahman MM; Shabalina AS
    Front Artif Intell; 2021; 4():718950. PubMed ID: 35047766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryogenic microwave filter cavity with a tunability greater than 5 GHz.
    Clark TJ; Vadakkumbatt V; Souris F; Ramp H; Davis JP
    Rev Sci Instrum; 2018 Nov; 89(11):114704. PubMed ID: 30501360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nb
    Eremeev G; Clemens W; Macha K; Reece CE; Valente-Feliciano AM; Williams S; Pudasaini U; Kelley M
    Rev Sci Instrum; 2020 Jul; 91(7):073911. PubMed ID: 32752803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.
    Xiao BP; Reece CE; Phillips HL; Geng RL; Wang H; Marhauser F; Kelley MJ
    Rev Sci Instrum; 2011 May; 82(5):056104. PubMed ID: 21639552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.
    Zhang L; Miyamachi T; Tomanić T; Dehm R; Wulfhekel W
    Rev Sci Instrum; 2011 Oct; 82(10):103702. PubMed ID: 22047298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.