These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36461703)

  • 41. Progress and Perspective of Electrocatalytic CO
    Zhang W; Hu Y; Ma L; Zhu G; Wang Y; Xue X; Chen R; Yang S; Jin Z
    Adv Sci (Weinh); 2018 Jan; 5(1):1700275. PubMed ID: 29375961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances and Challenges for the Electrochemical Reduction of CO
    Jin S; Hao Z; Zhang K; Yan Z; Chen J
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20627-20648. PubMed ID: 33861487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic- and Molecular-Level Modulation of Dispersed Active Sites for Electrocatalytic CO
    Juthathan M; Chantarojsiri T; Tuntulani T; Leeladee P
    Chem Asian J; 2022 Jun; 17(12):e202200237. PubMed ID: 35417092
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defect-Enhanced CO
    Chen H; Handoko AD; Wang T; Qu J; Xiao J; Liu X; Legut D; Wei Seh Z; Zhang Q
    ChemSusChem; 2020 Nov; 13(21):5690-5698. PubMed ID: 32815277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Active Site Engineering in Porous Electrocatalysts.
    Chen H; Liang X; Liu Y; Ai X; Asefa T; Zou X
    Adv Mater; 2020 Nov; 32(44):e2002435. PubMed ID: 32666550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide.
    Zhu DD; Liu JL; Qiao SZ
    Adv Mater; 2016 May; 28(18):3423-52. PubMed ID: 26996295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts With Advanced Low-Temperature Activity Toward CO
    Lv C; Xu L; Chen M; Cui Y; Wen X; Li Y; Wu CE; Yang B; Miao Z; Hu X; Shou Q
    Front Chem; 2020; 8():269. PubMed ID: 32411660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Symmetry-Breaking Sites for Activating Linear Carbon Dioxide Molecules.
    Li H; Zhao J; Luo L; Du J; Zeng J
    Acc Chem Res; 2021 Mar; 54(6):1454-1464. PubMed ID: 33541079
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast Screening for Copper-Based Bimetallic Electrocatalysts: Efficient Electrocatalytic Reduction of CO
    Xie M; Shen Y; Ma W; Wei D; Zhang B; Wang Z; Wang Y; Zhang Q; Xie S; Wang C; Wang Y
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213423. PubMed ID: 36289577
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide.
    Du J; Ouyang H; Tan B
    Chem Asian J; 2021 Dec; 16(23):3833-3850. PubMed ID: 34605613
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalyst-electrolyte interface chemistry for electrochemical CO
    Sa YJ; Lee CW; Lee SY; Na J; Lee U; Hwang YJ
    Chem Soc Rev; 2020 Sep; 49(18):6632-6665. PubMed ID: 32780048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rational Design and Effective Control of Gold-Based Bimetallic Electrocatalyst for Boosting CO
    Guo C; Zhang T; Lu X; Wu CL
    ChemSusChem; 2021 Jul; 14(13):2731-2739. PubMed ID: 33931946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO
    Xie W; Li H; Cui G; Li J; Song Y; Li S; Zhang X; Lee JY; Shao M; Wei M
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7382-7388. PubMed ID: 33319448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical Approaches for CO
    Overa S; Ko BH; Zhao Y; Jiao F
    Acc Chem Res; 2022 Mar; 55(5):638-648. PubMed ID: 35041403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO
    Wang J; Tan HY; Zhu Y; Chu H; Chen HM
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17254-17267. PubMed ID: 33682240
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrocatalytic reduction of CO
    Ma W; He X; Wang W; Xie S; Zhang Q; Wang Y
    Chem Soc Rev; 2021 Nov; 50(23):12897-12914. PubMed ID: 34609390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and Preparation of Electrocatalysts by Electrodeposition for CO
    Liu J; Li P; Bi J; Zhu Q; Han B
    Chemistry; 2022 Jun; 28(31):e202200242. PubMed ID: 35324042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst.
    Lee S; Kim D; Lee J
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14701-5. PubMed ID: 26473324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO
    He W; Liberman I; Rozenberg I; Ifraemov R; Hod I
    Angew Chem Int Ed Engl; 2020 May; 59(21):8262-8269. PubMed ID: 32112586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organic-Inorganic Hybrid Nanomaterials for Electrocatalytic CO
    Yang C; Li S; Zhang Z; Wang H; Liu H; Jiao F; Guo Z; Zhang X; Hu W
    Small; 2020 Jul; 16(29):e2001847. PubMed ID: 32510861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.