These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36461907)

  • 21. Application of an alchemical free energy method for the prediction of thermostable DuraPETase variants.
    Schreiber S; Gercke D; Lenz F; Jose J
    Appl Microbiol Biotechnol; 2024 Apr; 108(1):305. PubMed ID: 38643427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting binding affinity changes from long-distance mutations using molecular dynamics simulations and Rosetta.
    Wells NGM; Smith CA
    Proteins; 2023 Jul; 91(7):920-932. PubMed ID: 36757060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correspondence between functional scores from deep mutational scans and predicted effects on protein stability.
    Gerasimavicius L; Livesey BJ; Marsh JA
    Protein Sci; 2023 Jul; 32(7):e4688. PubMed ID: 37243972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.
    Kowalsky CA; Whitehead TA
    Proteins; 2016 Dec; 84(12):1914-1928. PubMed ID: 27699856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of Protein Mutational Free Energy: Benchmark and Sampling Improvements Increase Classification Accuracy.
    Frenz B; Lewis SM; King I; DiMaio F; Park H; Song Y
    Front Bioeng Biotechnol; 2020; 8():558247. PubMed ID: 33134287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CCMpred--fast and precise prediction of protein residue-residue contacts from correlated mutations.
    Seemayer S; Gruber M; Söding J
    Bioinformatics; 2014 Nov; 30(21):3128-30. PubMed ID: 25064567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A three-state prediction of single point mutations on protein stability changes.
    Capriotti E; Fariselli P; Rossi I; Casadio R
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S6. PubMed ID: 18387208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The PyRosetta Toolkit: a graphical user interface for the Rosetta software suite.
    Adolf-Bryfogle J; Dunbrack RL
    PLoS One; 2013; 8(7):e66856. PubMed ID: 23874400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An improved experimental system for determining small folding entropy changes resulting from proline to alanine substitutions.
    Street TO; Bradley CM; Barrick D
    Protein Sci; 2005 Sep; 14(9):2429-35. PubMed ID: 16131666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alchemical Calculation of Relative Free Energies for Charge-Changing Mutations at Protein-Protein Interfaces Considering Fixed and Variable Protonation States.
    Hernández González JE; de Araujo AS
    J Chem Inf Model; 2023 Nov; 63(21):6807-6822. PubMed ID: 37851531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cost function network-based design of protein-protein interactions: predicting changes in binding affinity.
    Viricel C; de Givry S; Schiex T; Barbe S
    Bioinformatics; 2018 Aug; 34(15):2581-2589. PubMed ID: 29474517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein sequence design by conformational landscape optimization.
    Norn C; Wicky BIM; Juergens D; Liu S; Kim D; Tischer D; Koepnick B; Anishchenko I; ; Baker D; Ovchinnikov S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33712545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
    Kuenze G; Meiler J
    Proteins; 2019 Dec; 87(12):1341-1350. PubMed ID: 31292988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CS-ROSETTA.
    Nerli S; Sgourakis NG
    Methods Enzymol; 2019; 614():321-362. PubMed ID: 30611429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Practically useful: what the Rosetta protein modeling suite can do for you.
    Kaufmann KW; Lemmon GH; Deluca SL; Sheehan JH; Meiler J
    Biochemistry; 2010 Apr; 49(14):2987-98. PubMed ID: 20235548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DDGun: an untrained predictor of protein stability changes upon amino acid variants.
    Montanucci L; Capriotti E; Birolo G; Benevenuta S; Pancotti C; Lal D; Fariselli P
    Nucleic Acids Res; 2022 Jul; 50(W1):W222-W227. PubMed ID: 35524565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex.
    Zhang I; Rufa DA; Pulido I; Henry MM; Rosen LE; Hauser K; Singh S; Chodera JD
    J Chem Theory Comput; 2023 Aug; 19(15):4863-4882. PubMed ID: 37450482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Most Monogenic Disorders Are Caused by Mutations Altering Protein Folding Free Energy.
    Pandey P; Alexov E
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396641
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.