These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36461931)

  • 1. 1,2,3,5-Tetrazines: A General Synthesis, Cycloaddition Scope, and Fundamental Reactivity Patterns.
    Wu ZC; Boger DL
    J Org Chem; 2022 Dec; 87(24):16829-16846. PubMed ID: 36461931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, Characterization, and Cycloaddition Reactivity of a Monocyclic Aromatic 1,2,3,5-Tetrazine.
    Wu ZC; Boger DL
    J Am Chem Soc; 2019 Oct; 141(41):16388-16397. PubMed ID: 31524389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insights into the Reaction of Amidines with 1,2,3-Triazines and 1,2,3,5-Tetrazines.
    Wu ZC; Houk KN; Boger DL; Svatunek D
    J Am Chem Soc; 2022 Jun; 144(24):10921-10928. PubMed ID: 35666564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions.
    Zawada Z; Guo Z; Oliveira BL; Navo CD; Li H; Cal PMSD; Corzana F; Jiménez-Osés G; Bernardes GJL
    Bioconjug Chem; 2021 Aug; 32(8):1812-1822. PubMed ID: 34264651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic Heterocycles as Productive Dienophiles in the Inverse Electron-Demand Diels-Alder Reactions of 1,3,5-Triazines.
    Xu G; Bai X; Dang Q
    Acc Chem Res; 2020 Apr; 53(4):773-781. PubMed ID: 32227911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized Triazines and Tetrazines: Synthesis and Applications.
    Mondal J; Sivaramakrishna A
    Top Curr Chem (Cham); 2022 Jun; 380(5):34. PubMed ID: 35737142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off.
    Svatunek D; Wilkovitsch M; Hartmann L; Houk KN; Mikula H
    J Am Chem Soc; 2022 May; 144(18):8171-8177. PubMed ID: 35500228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acyclic and Heterocyclic Azadiene Diels-Alder Reactions Promoted by Perfluoroalcohol Solvent Hydrogen Bonding: Comprehensive Examination of Scope.
    Zhu Z; Boger DL
    J Org Chem; 2022 Nov; 87(21):14657-14672. PubMed ID: 36239452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids.
    Eising S; Engwerda AHJ; Riedijk X; Bickelhaupt FM; Bonger KM
    Bioconjug Chem; 2018 Sep; 29(9):3054-3059. PubMed ID: 30080405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines.
    Marzabadi CH; Kelty SP; Altamura A
    Carbohydr Res; 2022 Sep; 519():108623. PubMed ID: 35738050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding.
    Zhu Z; Glinkerman CM; Boger DL
    J Am Chem Soc; 2020 Dec; 142(49):20778-20787. PubMed ID: 33252223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse electron demand Diels-Alder reactions of 1,2,3-triazines: pronounced substituent effects on reactivity and cycloaddition scope.
    Anderson ED; Boger DL
    J Am Chem Soc; 2011 Aug; 133(31):12285-92. PubMed ID: 21736324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
    Liu L; Zhang D; Johnson M; Devaraj NK
    Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and reactivity comparisons of 1-methyl-3-substituted cyclopropene mini-tags for tetrazine bioorthogonal reactions.
    Yang J; Liang Y; Šečkutė J; Houk KN; Devaraj NK
    Chemistry; 2014 Mar; 20(12):3365-75. PubMed ID: 24615990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of Increased Reactivity in Rhenium-Mediated Cycloadditions of Tetrazines.
    Turlik A; Houk KN; Svatunek D
    J Org Chem; 2021 Sep; 86(18):13129-13133. PubMed ID: 34468143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes.
    Wu H; Yang J; Šečkutė J; Devaraj NK
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5805-9. PubMed ID: 24764312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective.
    Zhang J; Shukla V; Boger DL
    J Org Chem; 2019 Aug; 84(15):9397-9445. PubMed ID: 31062977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cycloadditions of noncomplementary substituted 1,2,3-triazines.
    Anderson ED; Duerfeldt AS; Zhu K; Glinkerman CM; Boger DL
    Org Lett; 2014 Oct; 16(19):5084-7. PubMed ID: 25222918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines with Enamines Promoted by the Lewis Acid ZnCl
    Zhu Z; Boger DL
    J Org Chem; 2022 May; 87(9):6288-6301. PubMed ID: 35417656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.