These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36461955)

  • 21. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Band-Gap Modulation of Graphyne Nanoribbons by Edge Quantum Entrapment.
    Liu Y; Bo M; Sun CQ; Huang Y
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29414901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.
    Huang LF; Zhang GR; Zheng XH; Gong PL; Cao TF; Zeng Z
    J Phys Condens Matter; 2013 Feb; 25(5):055304. PubMed ID: 23300171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smooth gap tuning strategy for cove-type graphene nanoribbons.
    de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH
    RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical insights into the methane catalytic decomposition on graphene nanoribbons edges.
    Xavier NF; Payne AJR; Bauerfeldt GF; Sacchi M
    Front Chem; 2023; 11():1172687. PubMed ID: 37324559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Half-metallicity in edge-modified zigzag graphene nanoribbons.
    Kan EJ; Li Z; Yang J; Hou JG
    J Am Chem Soc; 2008 Apr; 130(13):4224-5. PubMed ID: 18331034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gap opening in graphene nanoribbons by application of simple shear strain and in-plane electric field.
    Bandeira NS; da Costa DR; Chaves A; Farias GA; Filho RNC
    J Phys Condens Matter; 2021 Feb; 33(6):065503. PubMed ID: 33108780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects.
    Tang GP; Zhang ZH; Deng XQ; Fan ZQ; Zhu HL
    Phys Chem Chem Phys; 2015 Jan; 17(1):638-43. PubMed ID: 25407715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The half-metallicity of zigzag graphene nanoribbons with asymmetric edge terminations.
    Li Z; Huang B; Duan W
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5374-8. PubMed ID: 21125901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.
    Culchac FJ; Capaz RB
    Nanotechnology; 2016 Feb; 27(6):065707. PubMed ID: 26762781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topological band engineering of graphene nanoribbons.
    Rizzo DJ; Veber G; Cao T; Bronner C; Chen T; Zhao F; Rodriguez H; Louie SG; Crommie MF; Fischer FR
    Nature; 2018 Aug; 560(7717):204-208. PubMed ID: 30089918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum confinement and edge effects on electronic properties of zigzag green phosphorene nanoribbons.
    Ma C; Ma T; Peng X
    J Phys Condens Matter; 2020 Apr; 32(17):175301. PubMed ID: 31914431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions.
    Dutta S; Pati SK
    J Phys Chem B; 2008 Feb; 112(5):1333-5. PubMed ID: 18189386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field.
    Saroka VA; Batrakov KG; Demin VA; Chernozatonskii LA
    J Phys Condens Matter; 2015 Apr; 27(14):145305. PubMed ID: 25791088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.