BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3646233)

  • 1. Interaction of RNA with transformed glucocorticoid receptor. II. Identification of the RNA as transfer RNA.
    Ali M; Vedeckis WV
    J Biol Chem; 1987 May; 262(14):6778-84. PubMed ID: 3646233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of RNA with transformed glucocorticoid receptor. I. Isolation and purification of the RNA.
    Ali M; Vedeckis WV
    J Biol Chem; 1987 May; 262(14):6771-7. PubMed ID: 3571287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonucleic acid is a component of the oligomeric, transformed mouse AtT-20 cell glucocorticoid receptor.
    Kovacic-Milivojević B; LaPointe MC; Reker CE; Vedeckis WV
    Biochemistry; 1985 Dec; 24(25):7357-66. PubMed ID: 4084586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of 3H-amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA-mediated, post-translational protein modification in squid giant axons.
    Ingoglia NA; Giuditta A; Zanakis MF; Babigian A; Tasaki I; Chakraborty G; Sturman JA
    J Neurosci; 1983 Dec; 3(12):2463-73. PubMed ID: 6558112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glucocorticoid receptor protein binds to transfer RNA.
    Ali M; Vedeckis WV
    Science; 1987 Jan; 235(4787):467-70. PubMed ID: 3798121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformed mouse glucocorticoid receptor: generation and interconversion of the 3.8S, monomeric and 5.2S, oligomeric species.
    Reker CE; Kovacic-Milivojević B; Eastman-Reks SB; Vedeckis WV
    Biochemistry; 1985 Jan; 24(1):196-204. PubMed ID: 3994967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantities of individual aminoacyl-tRNA families and their turnover in Escherichia coli.
    Jakubowski H; Goldman E
    J Bacteriol; 1984 Jun; 158(3):769-76. PubMed ID: 6373741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent cross-linking of transfer ribonucleic acid to the ribosomal P site. Mechanism and site of reaction in transfer ribonucleic acid.
    Ofengand J; Liou R; Kohut J; Schwartz I; Zimmermann RA
    Biochemistry; 1979 Oct; 18(20):4322-32. PubMed ID: 385051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of detectable ribonucleic acid in the purified, untransformed mouse glucocorticoid receptor.
    Kovacic-Milivojević B; Vedeckis WV
    Biochemistry; 1986 Dec; 25(25):8266-73. PubMed ID: 3814582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of the intracellular concentration of aminoacyl-tRNA synthetases and isoaccepting tRNAs during amino-acid limited growth in Escherichia coli.
    Thomale J; Nass G
    Eur J Biochem; 1978 Apr; 85(2):407-18. PubMed ID: 348470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. The effect of the side-chain of the amino acid linked to tRNA.
    Wagner T; Sprinzl M
    Eur J Biochem; 1980; 108(1):213-21. PubMed ID: 6773761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon-induced transfer RNA association. A property of transfer RNA involved in its adaptor function?
    Labuda D; Pörschke D
    J Mol Biol; 1983 Jun; 167(1):205-9. PubMed ID: 6191036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalent and non-equivalent binding sites for tRNA on aminoacyl-tRNA synthetases.
    Krauss G; Pingoud A; Boehme D; Riesner D; Peters F; Maas G
    Eur J Biochem; 1975 Jul; 55(3):517-29. PubMed ID: 1100384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for the aminoacyl-tRNA binding site of eukaryotic elongation factor 1 alpha.
    Kinzy TG; Freeman JP; Johnson AE; Merrick WC
    J Biol Chem; 1992 Jan; 267(3):1623-32. PubMed ID: 1730707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of liver regeneration on tRNA contents and aminoacyl-tRNA synthetase activities and sedimentation patterns.
    Del Monte U; Capaccioli S; Neri Cini G; Perego R; Caldini R; Chevanne M
    Biochem J; 1986 May; 236(1):163-9. PubMed ID: 3790068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three photo-cross-linked complexes of yeast phenylalanine specific transfer ribonucleic acid with aminoacyl transfer ribonucleic acid synthetases.
    Schoemaker HJ; Budzik GP; Giegé R; Schimmel PR
    J Biol Chem; 1975 Jun; 250(12):4440-4. PubMed ID: 237899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix.
    Escalante C; Yang DC
    J Biol Chem; 1993 Mar; 268(8):6014-23. PubMed ID: 8449960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the high molecular weight form of polypeptide chain elongation factor-1 from pig liver. II. Interaction with guanine nucleotides and aminoacyl-tRNA.
    Hattori S; Iwasaki K
    J Biochem; 1982 Jul; 92(1):173-83. PubMed ID: 6922131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.