BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36462461)

  • 1. Deep learning for hetero-homo conversion in channel-domain for phase aberration correction in ultrasound imaging.
    Koike T; Tomii N; Watanabe Y; Azuma T; Takagi S
    Ultrasonics; 2023 Mar; 129():106890. PubMed ID: 36462461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating pulse-echo sound speed estimation in breast ultrasound with deep learning.
    Simson WA; Paschali M; Sideri-Lampretsa V; Navab N; Dahl JJ
    Ultrasonics; 2024 Feb; 137():107179. PubMed ID: 37939413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.
    Luchies AC; Byram BC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Nov; 67(11):2321-2335. PubMed ID: 32746184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial Phase Correction Using Pulse-Echo Ultrasound and Deep Learning: A 2-D Numerical Study.
    Tian Z; Olmstead M; Jing Y; Han A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):117-126. PubMed ID: 38060357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aberration correction approach for single and dual aperture ultrasound imaging of the abdomen.
    van Hal VHJ; Muller JW; van Sambeek MRHM; Lopata RGP; Schwab HM
    Ultrasonics; 2023 May; 131():106936. PubMed ID: 36774785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Locally Adaptive Phase Aberration Correction (LAPAC) Method for Synthetic Aperture Sequences.
    Chau G; Jakovljevic M; Lavarello R; Dahl J
    Ultrason Imaging; 2019 Jan; 41(1):3-16. PubMed ID: 30222052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberration correction in diagnostic ultrasound: A review of the prior field and current directions.
    Ali R; Brevett T; Zhuang L; Bendjador H; Podkowa AS; Hsieh SS; Simson W; Sanabria SJ; Herickhoff CD; Dahl JJ
    Z Med Phys; 2023 Aug; 33(3):267-291. PubMed ID: 36849295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speed-of-sound imaging using diverging waves.
    Rau R; Schweizer D; Vishnevskiy V; Goksel O
    Int J Comput Assist Radiol Surg; 2021 Jul; 16(7):1201-1211. PubMed ID: 34160749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed Aberration Correction Techniques Based on Tomographic Sound Speed Estimates.
    Ali R; Brevett T; Hyun D; Brickson LL; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1714-1726. PubMed ID: 35353699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning for Ultrasound Beamforming in Flexible Array Transducer.
    Huang X; Lediju Bell MA; Ding K
    IEEE Trans Med Imaging; 2021 Nov; 40(11):3178-3189. PubMed ID: 34101588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase aberration correction for ultrasound imaging guided extracorporeal shock wave therapy (ESWT): Feasibility study.
    Kim H; Song I; Kang J; Yoo Y
    Ultrasonics; 2023 Jul; 132():107011. PubMed ID: 37071943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.
    Nguon LS; Seo J; Seo K; Han Y; Park S
    Comput Med Imaging Graph; 2022 Jun; 98():102073. PubMed ID: 35561639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network.
    Zhang J; He Q; Xiao Y; Zheng H; Wang C; Luo J
    Med Image Anal; 2021 May; 70():102018. PubMed ID: 33711740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A joint method of coherence factor and nonlinear beamforming for synthetic aperture imaging with a ring array.
    Lan Z; Rong C; Han C; Qu X; Li J; Lin H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging.
    Wang W; He Q; Zhang Z; Feng Z
    Ultrasonics; 2022 Dec; 126():106823. PubMed ID: 35973332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning based correction of RF field induced inhomogeneities for T2w prostate imaging at 7 T.
    Harrevelt SD; Meliado EFM; van Lier ALHMW; Reesink D; Meijer RP; Pluim JPW; Raaijmakers AJE
    NMR Biomed; 2023 Dec; 36(12):e5019. PubMed ID: 37622473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed ultrasound tomography in echo mode for imaging speed of sound using pulse-echo sonography: proof of principle.
    Jaeger M; Held G; Peeters S; Preisser S; GrĂ¼nig M; Frenz M
    Ultrasound Med Biol; 2015 Jan; 41(1):235-50. PubMed ID: 25220274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Neural Networks for Ultrasound Beamforming.
    Luchies AC; Byram BC
    IEEE Trans Med Imaging; 2018 Sep; 37(9):2010-2021. PubMed ID: 29994441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.