These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36462735)
1. Cryptotanshinone modulates proliferation, apoptosis, and fibrosis through inhibiting AR and EGFR/STAT3 axis to ameliorate benign prostatic hyperplasia progression. Wei P; Lin D; Zhang M; Luo C; Wu X; Deng B; Cui K; Chen Z Eur J Pharmacol; 2023 Jan; 938():175434. PubMed ID: 36462735 [TBL] [Abstract][Full Text] [Related]
2. Canagliflozin alleviates experimentally induced benign prostate hyperplasia in a rat model: exploring potential mechanisms involving mir-128b/EGFR/EGF and JAK2/STAT3 signaling pathways through in silico and in vivo investigations. Elbaz EM; Darwish A; Gad AM; Abdel Rahman AAS; Safwat MH Eur J Pharmacol; 2023 Oct; 957():175993. PubMed ID: 37598927 [TBL] [Abstract][Full Text] [Related]
3. Umbelliferone Ameliorates Benign Prostatic Hyperplasia by Inhibiting Cell Proliferation and G1/S Phase Cell Cycle Progression through Regulation of STAT3/E2F1 Axis. Kim HJ; Jin BR; An HJ Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445725 [TBL] [Abstract][Full Text] [Related]
4. Combination of Lycopene and Curcumin Synergistically Alleviates Testosterone-Propionate-Induced Benign Prostatic Hyperplasia in Sprague Dawley Rats via Modulating Inflammation and Proliferation. Wang S; He W; Li W; Zhou JR; Du Z Molecules; 2023 Jun; 28(13):. PubMed ID: 37446563 [TBL] [Abstract][Full Text] [Related]
5. Anti-proliferative effects of qianliening capsules on prostatic hyperplasia in vitro and in vivo. Zhong X; Lin J; Zhou J; Xu W; Hong Z Mol Med Rep; 2015 Aug; 12(2):1699-708. PubMed ID: 25825141 [TBL] [Abstract][Full Text] [Related]
6. Combination of Ligustri Lucidi Fructus with Ecliptae Herba and their phytoestrogen or phytoandrogen like active pharmaceutical ingredients alleviate oestrogen/testosterone-induced benign prostatic hyperplasia through regulating steroid 5-α-reductase. Tao R; Liu E; Zhao X; Han L; Yu B; Mao H; Yang W; Gao X Phytomedicine; 2022 Jul; 102():154169. PubMed ID: 35636178 [TBL] [Abstract][Full Text] [Related]
7. Potential ameliorative effects of epigallocatechin‑3‑gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats. Zhou J; Lei Y; Chen J; Zhou X Int Immunopharmacol; 2018 Nov; 64():162-169. PubMed ID: 30179845 [TBL] [Abstract][Full Text] [Related]
8. Asteris Radix et Rhizoma suppresses testosterone-induced benign prostatic hyperplasia in rats by regulating apoptosis and inflammation. Rho J; Seo CS; Park HS; Jeong HY; Moon OS; Seo YW; Son HY; Won YS; Kwun HJ J Ethnopharmacol; 2020 Jun; 255():112779. PubMed ID: 32209388 [TBL] [Abstract][Full Text] [Related]
9. Bushen Tongluo formula ameliorated testosterone propionate-induced benign prostatic hyperplasia in rats. Gong GY; Xi SY; Li CC; Tang WL; Fu XM; Huang YP Phytomedicine; 2023 Nov; 120():155048. PubMed ID: 37651753 [TBL] [Abstract][Full Text] [Related]
10. Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase. Tao R; Miao L; Yu X; Orgah JO; Barnabas O; Chang Y; Liu E; Fan G; Gao X J Ethnopharmacol; 2019 May; 235():65-74. PubMed ID: 30708032 [TBL] [Abstract][Full Text] [Related]
11. GREM1 knockdown regulates the proliferation, apoptosis and EMT of benign prostatic hyperplasia by suppressing the STAT3/c-Myc signaling. Sun X; Jiang M; Wang Z; Xu C; Ma Z Tissue Cell; 2024 Feb; 86():102231. PubMed ID: 37931534 [TBL] [Abstract][Full Text] [Related]
12. M2a macrophage can rescue proliferation and gene expression of benign prostate hyperplasia epithelial and stroma cells from insulin-like growth factor 1 knockdown. Qian Q; He W; Liu D; Yin J; Ye L; Chen P; Xu D; Liu J; Li Y; Zeng G; Li M; Wu Z; Zhang Y; Wang X; DiSanto ME; Zhang X Prostate; 2021 Jun; 81(9):530-542. PubMed ID: 33861464 [TBL] [Abstract][Full Text] [Related]
13. The extract of Celtis choseniana Nakai alleviates testosterone-induced benign prostatic hyperplasia through inhibiting 5α reductase type 2 and the Akt/NF-κB/AR pathway. Hong GL; Kim TW; Lee HJ; Kim YJ; Kim KH; Jung JY Chin J Nat Med; 2022 Jul; 20(7):518-526. PubMed ID: 35907650 [TBL] [Abstract][Full Text] [Related]
14. Quisqualis indica Improves Benign Prostatic Hyperplasia by Regulating Prostate Cell Proliferation and Apoptosis. Ub Wijerathne C; Park HS; Jeong HY; Song JW; Moon OS; Seo YW; Won YS; Son HY; Lim JH; Yeon SH; Kwun HJ Biol Pharm Bull; 2017 Dec; 40(12):2125-2133. PubMed ID: 28943529 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of combination of Stauntonia hexaphylla and Cornus officinalis on testosterone-induced benign prostatic hyperplasia through inhibition of 5α- reductase type 2 and induced cell apoptosis. Karunasagara S; Hong GL; Jung DY; Kim KH; Cho K; Jung JY PLoS One; 2020; 15(8):e0236879. PubMed ID: 32790676 [TBL] [Abstract][Full Text] [Related]
16. Fenofibrate mitigates testosterone induced benign prostatic hyperplasia via regulation of Akt/FOXO3a pathway and modulation of apoptosis and proliferation in rats. Kortam MA; Alawady AS; Hamid Sadik NA; Fathy N Arch Biochem Biophys; 2022 Jul; 723():109237. PubMed ID: 35430215 [TBL] [Abstract][Full Text] [Related]
17. Pao Pereira Extract Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by inhibiting 5α-Reductase. Liu J; Fang T; Li M; Song Y; Li J; Xue Z; Li J; Bu D; Liu W; Zeng Q; Zhang Y; Yun S; Huang R; Yan J Sci Rep; 2019 Dec; 9(1):19703. PubMed ID: 31873149 [TBL] [Abstract][Full Text] [Related]
18. Therapeutic role of Glycyrrhiza Uralensis fisher on benign prostatic hyperplasia through 5 alpha reductase regulation and apoptosis. Park JY; Park WY; Park J; Ahn KS; Lee JH; Kwak HJ; Um JY Phytomedicine; 2022 Oct; 105():154371. PubMed ID: 35964456 [TBL] [Abstract][Full Text] [Related]
19. Hesperidin ameliorates benign prostatic hyperplasia by attenuating cell proliferation, inflammatory response, and epithelial-mesenchymal transition via the TGF-β1/Smad signaling pathway. Kim HJ; Jin BR; An HJ Biomed Pharmacother; 2023 Apr; 160():114389. PubMed ID: 36791565 [TBL] [Abstract][Full Text] [Related]
20. The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Chen J; Rong N; Liu M; Xu C; Xiong Q; Lei Y Toxicol Appl Pharmacol; 2021 Jan; 411():115384. PubMed ID: 33359661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]