These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36462763)

  • 1. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar.
    Li H; Ai Z; Yang L; Zhang W; Yang Z; Peng H; Leng L
    Bioresour Technol; 2023 Feb; 369():128417. PubMed ID: 36462763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions.
    Zhu X; Li Y; Wang X
    Bioresour Technol; 2019 Sep; 288():121527. PubMed ID: 31136889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning application for predicting key properties of activated carbon produced from lignocellulosic biomass waste with chemical activation.
    Zou R; Yang Z; Zhang J; Lei R; Zhang W; Fnu F; Tsang DCW; Heyne J; Zhang X; Ruan R; Lei H
    Bioresour Technol; 2024 May; 399():130624. PubMed ID: 38521172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning.
    Tang JY; Chung BYH; Ang JC; Chong JW; Tan RR; Aviso KB; Chemmangattuvalappil NG; Thangalazhy-Gopakumar S
    Environ Technol; 2024 Jun; 45(15):2908-2922. PubMed ID: 36927324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume.
    Zhao F; Tang L; Song W; Jiang H; Liu Y; Chen H
    Sci Total Environ; 2024 Jul; 948():174584. PubMed ID: 38977098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: Characteristics and adsorption performance.
    Xiang W; Zhang X; Cao C; Quan G; Wang M; Zimmerman AR; Gao B
    Bioresour Technol; 2022 Jul; 355():127274. PubMed ID: 35533889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass.
    Li Y; Gupta R; You S
    Bioresour Technol; 2022 Sep; 359():127511. PubMed ID: 35752259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions.
    Lu S; Zong Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions.
    Dong Z; Bai X; Xu D; Li W
    Bioresour Technol; 2023 Jan; 367():128182. PubMed ID: 36307026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning prediction of biochar yield based on biomass characteristics.
    Ma J; Zhang S; Liu X; Wang J
    Bioresour Technol; 2023 Dec; 389():129820. PubMed ID: 37805089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-output neural network model for predicting biochar yield and composition.
    Wang Y; Xu L; Li J; Ren Z; Liu W; Ai Y; Zhou Y; Li Q; Zhang B; Guo N; Qu J; Zhang Y
    Sci Total Environ; 2024 Oct; 945():173942. PubMed ID: 38880151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of machine learning in prediction of Pb
    Huang W; Wang L; Zhu J; Dong L; Hu H; Yao H; Wang L; Lin Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):27286-27303. PubMed ID: 38507168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar.
    Shen T; Peng H; Yuan X; Liang Y; Liu S; Wu Z; Leng L; Qin P
    J Hazard Mater; 2024 Mar; 466():133442. PubMed ID: 38244458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview on engineering the surface area and porosity of biochar.
    Leng L; Xiong Q; Yang L; Li H; Zhou Y; Zhang W; Jiang S; Li H; Huang H
    Sci Total Environ; 2021 Apr; 763():144204. PubMed ID: 33385838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Goel C; Mohan S; Dinesha P
    Sci Total Environ; 2021 Dec; 798():149296. PubMed ID: 34325142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning prediction of higher heating value of biochar based on biomass characteristics and pyrolysis conditions.
    Wang M; Xie Y; Gao Y; Huang X; Chen W
    Bioresour Technol; 2024 Mar; 395():130364. PubMed ID: 38262543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance.
    Chen Y; Zhang X; Chen W; Yang H; Chen H
    Bioresour Technol; 2017 Dec; 246():101-109. PubMed ID: 28893501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of machine learning methods for prediction of metal sorption onto biochars.
    Zhu X; Wang X; Ok YS
    J Hazard Mater; 2019 Oct; 378():120727. PubMed ID: 31202073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical porous biochar from plant-based biomass through selectively removing lignin carbon from biochar for enhanced removal of toluene.
    Gan F; Cheng B; Jin Z; Dai Z; Wang B; Yang L; Jiang X
    Chemosphere; 2021 Sep; 279():130514. PubMed ID: 33873068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.