These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36462876)

  • 21. Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses.
    Shin JY; Kang M; Kim KR
    Sci Total Environ; 2022 Jan; 805():150132. PubMed ID: 34534873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification.
    Potchter O; Cohen P; Lin TP; Matzarakis A
    Sci Total Environ; 2018 Aug; 631-632():390-406. PubMed ID: 29525717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong.
    Lam CKC; Lau KK
    Int J Biometeorol; 2018 Jul; 62(7):1311-1324. PubMed ID: 29651590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel artificial neural network methodology to produce high-resolution bioclimatic maps using Earth Observation data: A case study for Cyprus.
    Philippopoulos K; Pantavou K; Cartalis C; Agathangelidis I; Mavrakou T; Polydoros A; Nikolopoulos G
    Sci Total Environ; 2023 Oct; 893():164734. PubMed ID: 37302587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Urban thermal comfort trends in Sri Lanka: the increasing overheating problem and its potential mitigation.
    Simath S; Emmanuel R
    Int J Biometeorol; 2022 Aug; 66(9):1865-1876. PubMed ID: 35852659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regional and seasonal variations of outdoor thermal comfort in China from 1966 to 2016.
    Wu F; Yang X; Shen Z
    Sci Total Environ; 2019 May; 665():1003-1016. PubMed ID: 30893732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative scenarios for ecological urbanizations using ENVI-met model.
    Yilmaz S; Mutlu E; Yilmaz H
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26307-26321. PubMed ID: 29978318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat Stress in Indoor Environments of Scandinavian Urban Areas: A Literature Review.
    Lundgren Kownacki K; Gao C; Kuklane K; Wierzbicka A
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30769945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outdoor thermal comfort and adaptive behaviors in the residential public open spaces of winter cities during the marginal season.
    Leng H; Liang S; Yuan Q
    Int J Biometeorol; 2020 Feb; 64(2):217-229. PubMed ID: 30923891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area.
    Chen X; Gao L; Xue P; Du J; Liu J
    Sci Total Environ; 2020 Dec; 749():141520. PubMed ID: 32827818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibrating UTCI'S comfort assessment scale for three Brazilian cities with different climatic conditions.
    Krüger EL; Silva TJV; da Silveira Hirashima SQ; da Cunha EG; Rosa LA
    Int J Biometeorol; 2021 Sep; 65(9):1463-1472. PubMed ID: 32206912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of studies on outdoor thermal comfort in warm humid climates: challenges of informal urban fabric.
    Baruti MM; Johansson E; Åstrand J
    Int J Biometeorol; 2019 Oct; 63(10):1449-1462. PubMed ID: 31324980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Thermal Environment Evolution and Response Mechanism of Urban Sprawl Based on Multi-source Data].
    Liang JS; Bai YP; Yang XD; Gao ZQ; Li LW; Zhang CY; Wang Q
    Huan Jing Ke Xue; 2022 Jun; 43(6):3365-3374. PubMed ID: 35686807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer.
    Lee LSH; Jim CY
    Int J Biometeorol; 2019 Jul; 63(7):895-909. PubMed ID: 31154507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale.
    Duncan JMA; Boruff B; Saunders A; Sun Q; Hurley J; Amati M
    Sci Total Environ; 2019 Mar; 656():118-128. PubMed ID: 30504014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the potential of integrated urban greening strategies for reducing outdoor thermal stresses: a case of asymmetrical configuration in the tropical city of Bhopal.
    Ojha SK; Mukherjee M
    Int J Biometeorol; 2024 Jul; 68(7):1451-1474. PubMed ID: 38664286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research progress and development trend of quantitative assessment techniques for urban thermal environment.].
    Sun TG; Xiao RB; Cai YN; Wang YW; Wu CG
    Ying Yong Sheng Tai Xue Bao; 2016 Aug; 27(8):2717-2728. PubMed ID: 29733162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador.
    Johansson E; Yahia MW; Arroyo I; Bengs C
    Int J Biometeorol; 2018 Mar; 62(3):387-399. PubMed ID: 28283758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities.
    Sharifi E; Boland J
    Int J Biometeorol; 2020 Feb; 64(2):231-242. PubMed ID: 29916046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic.
    Urban A; Kyselý J
    Int J Environ Res Public Health; 2014 Jan; 11(1):952-67. PubMed ID: 24413706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.