BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36463283)

  • 1. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease.
    Zhang X; Wang X; Shivashankar GV; Uhler C
    Nat Commun; 2022 Dec; 13(1):7480. PubMed ID: 36463283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified computational framework for single-cell data integration with optimal transport.
    Cao K; Gong Q; Hong Y; Wan L
    Nat Commun; 2022 Dec; 13(1):7419. PubMed ID: 36456571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning.
    Zuo C; Zhang Y; Cao C; Feng J; Jiao M; Chen L
    Nat Commun; 2022 Oct; 13(1):5962. PubMed ID: 36216831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer's disease progression modelling.
    Martí-Juan G; Lorenzi M; Piella G;
    Neuroimage; 2023 Mar; 268():119892. PubMed ID: 36682509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized brain models identify neurotransmitter receptor changes in Alzheimer's disease.
    Khan AF; Adewale Q; Baumeister TR; Carbonell F; Zilles K; Palomero-Gallagher N; Iturria-Medina Y;
    Brain; 2022 Jun; 145(5):1785-1804. PubMed ID: 34605898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses.
    Wang J; Ma A; Chang Y; Gong J; Jiang Y; Qi R; Wang C; Fu H; Ma Q; Xu D
    Nat Commun; 2021 Mar; 12(1):1882. PubMed ID: 33767197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks.
    Klein HU; Schäfer M; Bennett DA; Schwender H; De Jager PL
    PLoS Comput Biol; 2020 Apr; 16(4):e1007771. PubMed ID: 32255787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Alzheimer's genes via brain transcriptome mapping.
    Baik JY; Kim M; Bao J; Long Q; Shen L;
    BMC Med Genomics; 2022 May; 15(Suppl 2):116. PubMed ID: 35590321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding disease progression and improving Alzheimer's disease clinical trials: Recent highlights from the Alzheimer's Disease Neuroimaging Initiative.
    Veitch DP; Weiner MW; Aisen PS; Beckett LA; Cairns NJ; Green RC; Harvey D; Jack CR; Jagust W; Morris JC; Petersen RC; Saykin AJ; Shaw LM; Toga AW; Trojanowski JQ;
    Alzheimers Dement; 2019 Jan; 15(1):106-152. PubMed ID: 30321505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single cell imaging-based chromatin biomarkers for tumor progression.
    Venkatachalapathy S; Jokhun DS; Andhari M; Shivashankar GV
    Sci Rep; 2021 Nov; 11(1):23041. PubMed ID: 34845273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments.
    Sivera R; Delingette H; Lorenzi M; Pennec X; Ayache N;
    Neuroimage; 2019 Sep; 198():255-270. PubMed ID: 31121298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics.
    Li Z; Chen X; Zhang X; Jiang R; Chen S
    Genome Res; 2023 Oct; 33(10):1757-1773. PubMed ID: 37903634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Bayesian tensor regression for imaging genetics applications.
    Liu Y; Chakraborty N; Qin ZS; Kundu S;
    Front Neurosci; 2023; 17():1212218. PubMed ID: 37680967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data.
    Jerby-Arnon L; Regev A
    Nat Biotechnol; 2022 Oct; 40(10):1467-1477. PubMed ID: 35513526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images.
    Bae S; Choi H; Lee DS
    Nucleic Acids Res; 2021 Jun; 49(10):e55. PubMed ID: 33619564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease.
    Nativio R; Lan Y; Donahue G; Sidoli S; Berson A; Srinivasan AR; Shcherbakova O; Amlie-Wolf A; Nie J; Cui X; He C; Wang LS; Garcia BA; Trojanowski JQ; Bonini NM; Berger SL
    Nat Genet; 2020 Oct; 52(10):1024-1035. PubMed ID: 32989324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.
    Liu N; Xu J; Liu H; Zhang S; Li M; Zhou Y; Qin W; Li MJ; Yu C;
    PLoS Genet; 2021 Feb; 17(2):e1009363. PubMed ID: 33630843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease.
    Yu G; Liu Y; Shen D
    Brain Struct Funct; 2016 Sep; 221(7):3787-801. PubMed ID: 26476928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.