BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36463297)

  • 21. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-laser dual-immunofluorescence confocal laser scanning microscopy using Cy2- and Cy5-conjugated secondary antibodies: unequivocal detection of co-localization of neuronal markers.
    Wouterlood FG; Van Denderen JC; Blijleven N; Van Minnen J; Härtig W
    Brain Res Brain Res Protoc; 1998 Jan; 2(2):149-59. PubMed ID: 9473644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser.
    Trägårdh J; Robb G; Amor R; Amos WB; Dempster J; McConnell G
    J Microsc; 2015 Sep; 259(3):210-8. PubMed ID: 25946127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prism-based spectral imaging of four species of single-molecule fluorophores by using one excitation laser.
    Haga T; Sonehara T; Fujita T; Takahashi S
    J Fluoresc; 2013 May; 23(3):591-7. PubMed ID: 23471629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Few-Photon Spectral Confocal Microscopy for Cell Imaging Using Superconducting Transition Edge Sensor.
    Niwa K; Hattori K; Fukuda D
    Front Bioeng Biotechnol; 2021; 9():789709. PubMed ID: 34976979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of combined spectral lifetime microscopy for biology.
    Yan L; Rueden CT; White JG; Eliceiri KW
    Biotechniques; 2006 Sep; 41(3):249, 251, 253 passim. PubMed ID: 16989084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early diagnosis of melanotic melanoma based on laser-induced melanin fluorescence.
    Eichhorn R; Wessler G; Scholz M; Leupold D; Stankovic G; Buder S; Stücker M; Hoffmann K
    J Biomed Opt; 2009; 14(3):034033. PubMed ID: 19566326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics.
    Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L
    Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Full spectrum filterless fluorescence microscopy.
    Booth MJ; Jesacher A; Juskaitis R; Wilson T
    J Microsc; 2010 Jan; 237(1):103-9. PubMed ID: 20055924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions.
    Bavali A; Parvin P; Mortazavi SZ; Mohammadian M; Mousavi Pour MR
    Appl Opt; 2014 Aug; 53(24):5398-409. PubMed ID: 25321111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser-induced fluorescence made simple: implications for the diagnosis and follow-up monitoring of basal cell carcinoma.
    Drakaki E; Dessinioti C; Stratigos AJ; Salavastru C; Antoniou C
    J Biomed Opt; 2014 Mar; 19(3):30901. PubMed ID: 24604472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser.
    Sun Y; Booker CF; Kumari S; Day RN; Davidson M; Periasamy A
    J Biomed Opt; 2009; 14(5):054009. PubMed ID: 19895111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.
    El-Sherif AF
    Lasers Med Sci; 2012 Jul; 27(4):767-75. PubMed ID: 21842224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser-induced autofluorescence spectroscopy of dental caries.
    König K; Flemming G; Hibst R
    Cell Mol Biol (Noisy-le-grand); 1998 Dec; 44(8):1293-300. PubMed ID: 9874516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exciting Wavelength and Concentration Related Two-Photon Fluorescence of Single and Mixed Laser Dyes.
    Chen L; Zhong X; Xu J
    J Fluoresc; 2020 Dec; 30(6):1431-1437. PubMed ID: 32918650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants.
    Stoneman MR; McCoy VE; Gee CT; Bober KMM; Raicu V
    Commun Biol; 2024 Jan; 7(1):53. PubMed ID: 38184735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer.
    Mallia RJ; Thomas SS; Mathews A; Kumar R; Sebastian P; Madhavan J; Subhash N
    Cancer; 2008 Apr; 112(7):1503-12. PubMed ID: 18260154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of ex-vivo confocal laser scanning microscopic features of melanocytic lesions and their histological correlates.
    Hartmann D; Ruini C; Mathemeier L; Bachmann MR; Dietrich A; Ruzicka T; von Braunmühl T
    J Biophotonics; 2017 Jan; 10(1):128-142. PubMed ID: 27091702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.