BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36463297)

  • 41. Red-shifted fluorescence of sound dental hard tissue.
    Zhang L; Nelson LY; Seibel EJ
    J Biomed Opt; 2011 Jul; 16(7):071411. PubMed ID: 21806257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source.
    Betz T; Teipel J; Koch D; Härtig W; Guck J; Käs J; Giessen H
    J Biomed Opt; 2005; 10(5):054009. PubMed ID: 16292969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence quenching effects of carbon nano-structures (Graphene Oxide and Nano Diamond) coupled with Methylene Blue.
    Pahang F; Parvin P; Bavali A
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117888. PubMed ID: 31826831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality.
    Parekh DJ; Lin WC; Herrell SD
    J Urol; 2005 Nov; 174(5):1754-8. PubMed ID: 16217277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Double-label immunofluorescence with the laser scanning confocal microscope using cyanine dyes.
    Sargent PB
    Neuroimage; 1994 Nov; 1(4):288-95. PubMed ID: 9343578
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discrimination of cancerous and healthy colon tissues: A new laser-based method.
    Gündoğdu Y; Alptekin H; Karabağlı P; Şahin M; Kilic HŞ
    Lasers Surg Med; 2019 Apr; 51(4):363-369. PubMed ID: 30575060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and implementation of a sensitive high-resolution nonlinear spectral imaging microscope.
    Palero JA; Latouche G; de Bruijn HS; van der Ploeg van den Heuvel A; Sterenborg HJ; Gerritsen HC
    J Biomed Opt; 2008; 13(4):044019. PubMed ID: 19021347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms.
    Neu TR; Kuhlicke U; Lawrence JR
    Appl Environ Microbiol; 2002 Feb; 68(2):901-9. PubMed ID: 11823234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-photon induced fluorescence of the calcium probe Indo-1.
    Szmacinski H; Gryczynski I; Lakowicz JR
    Biophys J; 1996 Jan; 70(1):547-55. PubMed ID: 8770232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer.
    Astner S; Dietterle S; Otberg N; Röwert-Huber HJ; Stockfleth E; Lademann J
    J Biomed Opt; 2008; 13(1):014003. PubMed ID: 18315361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser-induced multiphoton fluorescence of hemoglobin.
    Zhang JR; Xu YW; Deng YM; Wu CK; Jiang SP; Lian SH
    J Photochem Photobiol B; 1988 Mar; 1(3):329-35. PubMed ID: 3149668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulated fluorophore signal recovery buried within tissue mimicking phantoms.
    Sarkar S; Fan C; Hsiang JC; Dickson RM
    J Phys Chem A; 2013 Oct; 117(39):9501-9. PubMed ID: 23692258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence Multiplexing with Spectral Imaging and Combinatorics.
    Holzapfel HY; Stern AD; Bouhaddou M; Anglin CM; Putur D; Comer S; Birtwistle MR
    ACS Comb Sci; 2018 Nov; 20(11):653-659. PubMed ID: 30339749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visualizing nuclei in skin cryosections: viable options to 4'6-diamidino-2-phenylindol for confocal laser microscopy.
    Gläser K; Wilke K; Wepf R; Biel SS
    Skin Res Technol; 2008 Aug; 14(3):324-6. PubMed ID: 19159379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source.
    Melnikau D; Elcoroaristizabal S; Ryder AG
    Methods Appl Fluoresc; 2018 Sep; 6(4):045007. PubMed ID: 30101757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the possibility of calcium imaging using Indo-1 with three-photon excitation.
    Gryczynski I; Szmacinski H; Lakowicz JR
    Photochem Photobiol; 1995 Oct; 62(4):804-8. PubMed ID: 7480157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue.
    Drakaki E; Kaselouris E; Makropoulou M; Serafetinides AA; Tsenga A; Stratigos AJ; Katsambas AD; Antoniou C
    Skin Pharmacol Physiol; 2009; 22(3):158-65. PubMed ID: 19365155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope.
    König K; Simon U; Halbhuber KJ
    Cell Mol Biol (Noisy-le-grand); 1996 Dec; 42(8):1181-94. PubMed ID: 8997522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis.
    Bodanese B; Silveira FL; Zângaro RA; Pacheco MT; Pasqualucci CA; Silveira L
    Photomed Laser Surg; 2012 Jul; 30(7):381-7. PubMed ID: 22693951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-domain whole-field fluorescence lifetime imaging with optical sectioning.
    Cole MJ; Siegel J; Webb SE; Jones R; Dowling K; Dayel MJ; Parsons-Karavassilis D; French PM; Lever MJ; Sucharov LO; Neil MA; Juskaitis R; Wilson T
    J Microsc; 2001 Sep; 203(Pt 3):246-57. PubMed ID: 11555142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.