These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36463404)

  • 21. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices.
    Lerner E; Barth A; Hendrix J; Ambrose B; Birkedal V; Blanchard SC; Börner R; Sung Chung H; Cordes T; Craggs TD; Deniz AA; Diao J; Fei J; Gonzalez RL; Gopich IV; Ha T; Hanke CA; Haran G; Hatzakis NS; Hohng S; Hong SC; Hugel T; Ingargiola A; Joo C; Kapanidis AN; Kim HD; Laurence T; Lee NK; Lee TH; Lemke EA; Margeat E; Michaelis J; Michalet X; Myong S; Nettels D; Peulen TO; Ploetz E; Razvag Y; Robb NC; Schuler B; Soleimaninejad H; Tang C; Vafabakhsh R; Lamb DC; Seidel CA; Weiss S
    Elife; 2021 Mar; 10():. PubMed ID: 33779550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling.
    Wilson H; Wang Q
    Nat Methods; 2021 Jul; 18(7):816-820. PubMed ID: 34127856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET.
    Ingargiola A; Weiss S; Lerner E
    J Phys Chem B; 2018 Dec; 122(49):11598-11615. PubMed ID: 30252475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-photon smFRET. I: Theory and conceptual basis.
    Saurabh A; Fazel M; Safar M; Sgouralis I; Pressé S
    Biophys Rep (N Y); 2023 Mar; 3(1):100089. PubMed ID: 36582655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures.
    Wanninger S; Asadiatouei P; Bohlen J; Salem CB; Tinnefeld P; Ploetz E; Lamb DC
    Nat Commun; 2023 Oct; 14(1):6564. PubMed ID: 37848439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. smFRET experiments of the RNA polymerase II transcription initiation complex.
    Malkusch N; Dörfler T; Nagy J; Eilert T; Michaelis J
    Methods; 2017 May; 120():115-124. PubMed ID: 28434999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precisely and Accurately Inferring Single-Molecule Rate Constants.
    Kinz-Thompson CD; Bailey NA; Gonzalez RL
    Methods Enzymol; 2016; 581():187-225. PubMed ID: 27793280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.
    Götz M; Wortmann P; Schmid S; Hugel T
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments.
    van de Meent JW; Bronson JE; Wiggins CH; Gonzalez RL
    Biophys J; 2014 Mar; 106(6):1327-37. PubMed ID: 24655508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Molecule FRET Methods to Study Glutamate Receptors.
    Litwin DB; Durham RJ; Jayaraman V
    Methods Mol Biol; 2019; 1941():3-16. PubMed ID: 30707423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ICON: An Adaptation of Infinite HMMs for Time Traces with Drift.
    Sgouralis I; Pressé S
    Biophys J; 2017 May; 112(10):2117-2126. PubMed ID: 28538149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Molecule FRET of Intrinsically Disordered Proteins.
    Metskas LA; Rhoades E
    Annu Rev Phys Chem; 2020 Apr; 71():391-414. PubMed ID: 32097582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data.
    Bronson JE; Fei J; Hofman JM; Gonzalez RL; Wiggins CH
    Biophys J; 2009 Dec; 97(12):3196-205. PubMed ID: 20006957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studying DNA-protein interactions with single-molecule Förster resonance energy transfer.
    Farooq S; Fijen C; Hohlbein J
    Protoplasma; 2014 Mar; 251(2):317-32. PubMed ID: 24374460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET.
    van der Feltz C; Hoskins AA
    Methods; 2017 Aug; 125():45-54. PubMed ID: 28529063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein folding transition path times from single molecule FRET.
    Chung HS; Eaton WA
    Curr Opin Struct Biol; 2018 Feb; 48():30-39. PubMed ID: 29080467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ratiometric Single-Molecule FRET Measurements to Probe Conformational Subpopulations of Intrinsically Disordered Proteins.
    Nasir I; Bentley EP; Deniz AA
    Curr Protoc Chem Biol; 2020 Mar; 12(1):e80. PubMed ID: 32159932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning.
    Li J; Zhang L; Johnson-Buck A; Walter NG
    Nat Commun; 2020 Nov; 11(1):5833. PubMed ID: 33203879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-Molecule FRET Assay to Observe the Activity of Proteins Involved in RNA/RNA Annealing.
    Bizebard T; Arluison V; Bockelmann U
    Methods Mol Biol; 2018; 1737():301-319. PubMed ID: 29484600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories.
    Götz M; Barth A; Bohr SS; Börner R; Chen J; Cordes T; Erie DA; Gebhardt C; Hadzic MCAS; Hamilton GL; Hatzakis NS; Hugel T; Kisley L; Lamb DC; de Lannoy C; Mahn C; Dunukara D; de Ridder D; Sanabria H; Schimpf J; Seidel CAM; Sigel RKO; Sletfjerding MB; Thomsen J; Vollmar L; Wanninger S; Weninger KR; Xu P; Schmid S
    Nat Commun; 2022 Sep; 13(1):5402. PubMed ID: 36104339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.