These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36463803)

  • 21. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors.
    Ying S; Chen C; Wang J; Lu C; Liu T; Kong Y; Yi FY
    Chempluschem; 2021 Dec; 86(12):1608-1622. PubMed ID: 34907675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-Resolved Spectroscopy of Photoinduced Electron Transfer in Dinuclear and Tetranuclear Fe/Co Prussian Blue Analogues.
    Zimara J; Stevens H; Oswald R; Demeshko S; Dechert S; Mata RA; Meyer F; Schwarzer D
    Inorg Chem; 2021 Jan; 60(1):449-459. PubMed ID: 33332100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UiO-66-Derived PBA Composite as Multifunctional Electrochemical Non-Enzymatic Sensor Realizing High-Performance Detection of Hydrogen Peroxide and Glucose.
    Jiang Q; Wang J; Liu T; Ying S; Kong Y; Chai N; Yi FY
    Inorg Chem; 2023 May; 62(18):7014-7023. PubMed ID: 37126666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water.
    Li MH; Lin KA; Yang MT; Thanh BX; Tsang DCW
    Chemosphere; 2020 Apr; 244():125444. PubMed ID: 31812052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimetallic FeMn@C derived from Prussian blue analogue as efficient nanozyme for glucose detection.
    Yang X; Feng C; Peng A; Wang Q; Liu ZY; Pei F; Mu J; Yang EC
    Anal Bioanal Chem; 2022 Nov; 414(27):7773-7782. PubMed ID: 36066578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles.
    Xue X; Gao M; Rao H; Luo M; Wang H; An P; Feng T; Lu X; Xue Z; Liu X
    Anal Chim Acta; 2020 Apr; 1105():197-207. PubMed ID: 32138919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Hollow Co-Fe Prussian Blue Analogue Cubes by using Silica Spheres as a Sacrificial Template.
    Azhar A; Zakaria MB; Ebeid EM; Chikyow T; Bando Y; Alshehri AA; Alghamdi YG; Cai ZX; Kumar NA; Lin J; Kim H; Yamauchi Y
    ChemistryOpen; 2018 Aug; 7(8):599-603. PubMed ID: 30094126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noble Metal-Free Oxygen Reduction Reaction Catalysts Derived from Prussian Blue Nanocrystals Dispersed in Polyaniline.
    Wang X; Zou L; Fu H; Xiong Y; Tao Z; Zheng J; Li X
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8436-44. PubMed ID: 26938272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fe-CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting.
    Cao LM; Hu YW; Tang SF; Iljin A; Wang JW; Zhang ZM; Lu TB
    Adv Sci (Weinh); 2018 Oct; 5(10):1800949. PubMed ID: 30356966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core-shell Prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of Rhodamine B with reduced metal leaching.
    Zeng L; Xiao L; Shi X; Wei M; Cao J; Long Y
    J Colloid Interface Sci; 2019 Jan; 534():586-594. PubMed ID: 30265986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal ion exchange in Prussian blue analogues: Cu(ii)-exchanged Zn-Co PBAs as highly selective catalysts for A
    Marquez C; Cirujano FG; Smolders S; Van Goethem C; Vankelecom I; De Vos D; De Baerdemaeker T
    Dalton Trans; 2019 Mar; 48(12):3946-3954. PubMed ID: 30829365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor.
    Yang Y; Cao Y; Wang X; Fang G; Wang S
    Biosens Bioelectron; 2015 Feb; 64():247-54. PubMed ID: 25240126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel urchin-like FeCo oxide nanostructures supported carbon spheres as a highly sensitive sensor for hydrazine sensing application.
    Nguyen DM; Bach LG; Bui QB
    J Pharm Biomed Anal; 2019 Aug; 172():243-252. PubMed ID: 31071649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Transformation of Prussian-Blue Analogue-Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion.
    He B; Kuang P; Li X; Chen H; Yu J; Fan K
    Chemistry; 2020 Mar; 26(18):4052-4062. PubMed ID: 31437320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide.
    Chen J; Li Y; Ye H; Zhu P; Fu XZ; Sun R
    Dalton Trans; 2022 Sep; 51(35):13451-13461. PubMed ID: 35994011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive and selective serotonin (5-HT) electrochemical sensor based on ultrafine Fe
    Xu QQ; Luo L; Liu ZG; Guo Z; Huang XJ
    Biosens Bioelectron; 2023 Feb; 222():114990. PubMed ID: 36495719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst.
    Magro M; Baratella D; Salviulo G; Polakova K; Zoppellaro G; Tucek J; Kaslik J; Zboril R; Vianello F
    Biosens Bioelectron; 2014 Feb; 52():159-65. PubMed ID: 24041662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Core-Shell Heterostructured CuFe@FeFe Prussian Blue Analogue Coupling with Silver Nanoclusters via a One-Step Bioinspired Approach: Efficiently Nonlabeled Aptasensor for Detection of Bleomycin in Various Aqueous Environments.
    Zhou N; Yang L; Hu B; Song Y; He L; Chen W; Zhang Z; Liu Z; Lu S
    Anal Chem; 2018 Nov; 90(22):13624-13631. PubMed ID: 30343567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trade-Off of Metal Sites in Fe-Ni Bimetal Metal-Organic Frameworks for Efficient CO
    Lin M; Luo Y; Zhang T; Shen X; Zhuang Z; Yu Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52868-52876. PubMed ID: 36395169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.