These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36463961)
41. High-resolution neutron crystallography visualizes an OH-bound resting state of a copper-containing nitrite reductase. Fukuda Y; Hirano Y; Kusaka K; Inoue T; Tamada T Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4071-4077. PubMed ID: 32041886 [TBL] [Abstract][Full Text] [Related]
42. The neutron structure of urate oxidase resolves a long-standing mechanistic conundrum and reveals unexpected changes in protonation. Oksanen E; Blakeley MP; El-Hajji M; Ryde U; Budayova-Spano M PLoS One; 2014; 9(1):e86651. PubMed ID: 24466188 [TBL] [Abstract][Full Text] [Related]
43. Computational and experimental studies on the catalytic mechanism of biliverdin-IXbeta reductase. Smith LJ; Browne S; Mulholland AJ; Mantle TJ Biochem J; 2008 May; 411(3):475-84. PubMed ID: 18241201 [TBL] [Abstract][Full Text] [Related]
44. The excited-state chemistry of phycocyanobilin: a semiempirical study. Göller AH; Strehlow D; Hermann G Chemphyschem; 2005 Jul; 6(7):1259-68. PubMed ID: 15942968 [TBL] [Abstract][Full Text] [Related]
45. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Dammeyer T; Frankenberg-Dinkel N Photochem Photobiol Sci; 2008 Oct; 7(10):1121-30. PubMed ID: 18846276 [TBL] [Abstract][Full Text] [Related]
46. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase. Kami C; Mukougawa K; Muramoto T; Yokota A; Shinomura T; Lagarias JC; Kohchi T Proc Natl Acad Sci U S A; 2004 Jan; 101(4):1099-104. PubMed ID: 14722358 [TBL] [Abstract][Full Text] [Related]
47. [Neutron Crystallography of the Complex Between Photosynthetic Pigment of Phycocyanobilin Synthesizing Enzyme and Substrate Biliverdin IXα]. Fukuyama K; Wada K; Sugishima M; Unno M Seikagaku; 2015 Dec; 87(6):753-7. PubMed ID: 26863756 [No Abstract] [Full Text] [Related]
48. Structural and mechanistic insight into the ferredoxin-mediated two-electron reduction of bilins. Busch AW; Reijerse EJ; Lubitz W; Frankenberg-Dinkel N; Hofmann E Biochem J; 2011 Oct; 439(2):257-64. PubMed ID: 21729003 [TBL] [Abstract][Full Text] [Related]
49. HO1 and PcyA proteins involved in phycobilin biosynthesis form a 1:2 complex with ferredoxin-1 required for photosynthesis. Okada K FEBS Lett; 2009 Apr; 583(8):1251-6. PubMed ID: 19328793 [TBL] [Abstract][Full Text] [Related]
50. The O Askerka M; Brudvig GW; Batista VS Acc Chem Res; 2017 Jan; 50(1):41-48. PubMed ID: 28001034 [TBL] [Abstract][Full Text] [Related]
51. Current status of neutron crystallography in structural biology. Kono F; Kurihara K; Tamada T Biophys Physicobiol; 2022; 19():1-10. PubMed ID: 35666700 [TBL] [Abstract][Full Text] [Related]
52. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy. Nabedryk E; Breton J Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937 [TBL] [Abstract][Full Text] [Related]
53. Molecular cloning and expression analysis of a new bilin lyase: the cpcT gene encoding a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the β-subunit of phycocyanin in Arthrospira platensis FACHB314. Zhang R; Feng XT; Wu F; Ding Y; Zang XN; Zhang XC; Yuan DY; Zhao BR Gene; 2014 Jul; 544(2):191-7. PubMed ID: 24768724 [TBL] [Abstract][Full Text] [Related]
54. Neutron and X-ray crystallographic analysis of Achromobacter protease I at pD 8.0: protonation states and hydration structure in the free-form. Ohnishi Y; Yamada T; Kurihara K; Tanaka I; Sakiyama F; Masaki T; Niimura N Biochim Biophys Acta; 2013 Aug; 1834(8):1642-7. PubMed ID: 23714114 [TBL] [Abstract][Full Text] [Related]
55. Determination of the protonation preferences of bilin pigments in cryptophyte antenna complexes. Corbella M; Toa ZSD; Scholes GD; Luque FJ; Curutchet C Phys Chem Chem Phys; 2018 Aug; 20(33):21404-21416. PubMed ID: 30105318 [TBL] [Abstract][Full Text] [Related]
56. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Strambi A; Durbeej B Photochem Photobiol Sci; 2011 Apr; 10(4):569-79. PubMed ID: 21253657 [TBL] [Abstract][Full Text] [Related]
57. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
58. Coupling of hydrogen bonding to chromophore conformation and function in photoactive yellow protein. Brudler R; Meyer TE; Genick UK; Devanathan S; Woo TT; Millar DP; Gerwert K; Cusanovich MA; Tollin G; Getzoff ED Biochemistry; 2000 Nov; 39(44):13478-86. PubMed ID: 11063584 [TBL] [Abstract][Full Text] [Related]