BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36464100)

  • 1. Labdane diterpenoids from the heartwood of Leucosceptrum canum that impact on root growth and seed germination of Arabidopsis thaliana.
    Liu Y; Zhou YY; Luo SH; Guo K; Zhang MW; Jing SX; Li CH; Hua J; Li SH
    Phytochemistry; 2023 Feb; 206():113531. PubMed ID: 36464100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capitate glandular trichomes of Paragutzlaffia henryi harbor new phytotoxic labdane diterpenoids.
    Wang Y; Luo SH; Hua J; Liu Y; Jing SX; Li XN; Li SH
    J Agric Food Chem; 2015 Nov; 63(45):10004-12. PubMed ID: 26513276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana.
    Li P; Ding L; Zhang L; He J; Huan Z
    Plant Physiol Biochem; 2019 Jun; 139():738-745. PubMed ID: 31010613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auxin distribution and transport during embryogenesis and seed germination of Arabidopsis.
    Ni DA; Wang LJ; Ding CH; Xu ZH
    Cell Res; 2001 Dec; 11(4):273-8. PubMed ID: 11787772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana.
    Thole JM; Beisner ER; Liu J; Venkova SV; Strader LC
    G3 (Bethesda); 2014 May; 4(7):1259-74. PubMed ID: 24836325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversified abietane family diterpenoids from the leaves of Leucosceptrum canum and their cytotoxic activity.
    Guo K; Liu YC; Liu Y; Luo SH; Li WY; Li XN; Li SH
    Phytochemistry; 2019 Jan; 157():43-52. PubMed ID: 30366203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana.
    Hernández I; Munné-Bosch S
    Plant Physiol Biochem; 2012 Dec; 61():24-8. PubMed ID: 23031844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defense sesterterpenoid lactones from Leucosceptrum canum.
    Luo SH; Hua J; Niu XM; Liu Y; Li CH; Zhou YY; Jing SX; Zhao X; Li SH
    Phytochemistry; 2013 Feb; 86():29-35. PubMed ID: 23228599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.
    Yuan HM; Xu HH; Liu WC; Lu YT
    Plant Cell Physiol; 2013 May; 54(5):766-78. PubMed ID: 23396597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots.
    Suzuki M; Kao CY; Cocciolone S; McCarty DR
    Plant J; 2001 Nov; 28(4):409-18. PubMed ID: 11737778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development.
    Choi Y; Lee Y; Kim SY; Lee Y; Hwang JU
    Plant Cell Environ; 2013 May; 36(5):945-55. PubMed ID: 23078108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis.
    Zou N; Li B; Dong G; Kronzucker HJ; Shi W
    J Exp Bot; 2012 Jun; 63(10):3777-88. PubMed ID: 22407650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots.
    Vicente-Agullo F; Rigas S; Desbrosses G; Dolan L; Hatzopoulos P; Grabov A
    Plant J; 2004 Nov; 40(4):523-35. PubMed ID: 15500468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.
    Sukumar P; Maloney GS; Muday GK
    Plant Physiol; 2013 Jul; 162(3):1392-405. PubMed ID: 23677937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin and root initiation in somatic embryos of Arabidopsis.
    Bassuner BM; Lam R; Lukowitz W; Yeung EC
    Plant Cell Rep; 2007 Jan; 26(1):1-11. PubMed ID: 16865396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis.
    Della Rovere F; Fattorini L; D'Angeli S; Veloccia A; Falasca G; Altamura MM
    Ann Bot; 2013 Nov; 112(7):1395-407. PubMed ID: 24061489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination.
    Zhou L; Hou H; Yang T; Lian Y; Sun Y; Bian Z; Wang C
    Plant Physiol Biochem; 2018 Jul; 128():126-133. PubMed ID: 29775864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings.
    Martín-Rejano EM; Camacho-Cristóbal JJ; Herrera-Rodríguez MB; Rexach J; Navarro-Gochicoa MT; González-Fontes A
    Physiol Plant; 2011 Jun; 142(2):170-8. PubMed ID: 21338369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species-Mediated Auxin Hypersensitivity Causing pH-Dependent Root Elongation.
    Tivendale ND; Belt K; Berkowitz O; Whelan J; Millar AH; Huang S
    Plant Cell Physiol; 2021 Oct; 62(7):1185-1198. PubMed ID: 34018557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of reactive oxygen species and auxin in serotonin-induced inhibition of primary root elongation.
    Wan J; Zhang P; Sun L; Li S; Wang R; Zhou H; Wang W; Xu J
    J Plant Physiol; 2018 Oct; 229():89-99. PubMed ID: 30055520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.