These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 36464123)
1. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data. Zhang SW; Xu JY; Zhang T Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123 [TBL] [Abstract][Full Text] [Related]
2. A novel network control model for identifying personalized driver genes in cancer. Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387 [TBL] [Abstract][Full Text] [Related]
3. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model. Zhao W; Gu X; Chen S; Wu J; Zhou Z Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338 [TBL] [Abstract][Full Text] [Related]
4. Identifying driver genes for individual patients through inductive matrix completion. Zhang T; Zhang SW; Li Y Bioinformatics; 2021 Dec; 37(23):4477-4484. PubMed ID: 34175939 [TBL] [Abstract][Full Text] [Related]
5. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network. Zhang SW; Wang ZN; Li Y; Guo WF BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311 [TBL] [Abstract][Full Text] [Related]
6. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism. Peng W; Wu R; Dai W; Yu N BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646 [TBL] [Abstract][Full Text] [Related]
7. Improving cancer driver gene identification using multi-task learning on graph convolutional network. Peng W; Tang Q; Dai W; Chen T Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232 [TBL] [Abstract][Full Text] [Related]
8. Unsupervised construction of gene regulatory network based on single-cell multi-omics data of colorectal cancer. Cui L; Li H; Bian J; Wang G; Liang Y Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36723605 [TBL] [Abstract][Full Text] [Related]
9. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes. Zhang T; Zhang SW; Xie MY; Li Y Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234 [TBL] [Abstract][Full Text] [Related]
10. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification. Shi P; Han J; Zhang Y; Li G; Zhou X PLoS Comput Biol; 2024 Aug; 20(8):e1012389. PubMed ID: 39186807 [TBL] [Abstract][Full Text] [Related]
11. Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks. Song H; Yin C; Li Z; Feng K; Cao Y; Gu Y; Sun H Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984779 [TBL] [Abstract][Full Text] [Related]
12. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis. Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q Methods; 2023 May; 213():1-9. PubMed ID: 36933628 [TBL] [Abstract][Full Text] [Related]
13. Explainable Multilayer Graph Neural Network for cancer gene prediction. Chatzianastasis M; Vazirgiannis M; Zhang Z Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862225 [TBL] [Abstract][Full Text] [Related]
14. MiRNA-gene network embedding for predicting cancer driver genes. Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023 [TBL] [Abstract][Full Text] [Related]
15. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction. Wen G; Li L Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887 [TBL] [Abstract][Full Text] [Related]
16. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796 [TBL] [Abstract][Full Text] [Related]
17. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data. Yang H; Liu Y; Yang Y; Li D; Wang Z Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392 [TBL] [Abstract][Full Text] [Related]
18. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model. Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619 [TBL] [Abstract][Full Text] [Related]
19. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data. Nguyen QH; Le DH Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644 [TBL] [Abstract][Full Text] [Related]
20. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]