These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36464216)
41. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Liang L; Zheng C; Zhang H; Xu S; Zhang Z; Hu C; Bi L; Fan Z; Han B; Xu W Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():397-402. PubMed ID: 24887501 [TBL] [Abstract][Full Text] [Related]
42. Dielectric and FT-Raman spectroscopic approach to molecular identification of breast tumor tissues. Abd El-Hakam R; Khalil S; Mahani R Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():208-12. PubMed ID: 26142175 [TBL] [Abstract][Full Text] [Related]
43. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. Depciuch J; Kaznowska E; Zawlik I; Wojnarowska R; Cholewa M; Heraud P; Cebulski J Appl Spectrosc; 2016 Feb; 70(2):251-63. PubMed ID: 26903561 [TBL] [Abstract][Full Text] [Related]
44. Real-time in vivo cancer diagnosis using Raman spectroscopy. Wang W; Zhao J; Short M; Zeng H J Biophotonics; 2015 Jul; 8(7):527-45. PubMed ID: 25220508 [TBL] [Abstract][Full Text] [Related]
45. Revising Fourier-transform infrared (FT-IR) and Raman spectroscopy towards brain cancer detection. Lilo T; Morais CLM; Shenton C; Ray A; Gurusinghe N Photodiagnosis Photodyn Ther; 2022 Jun; 38():102785. PubMed ID: 35231616 [TBL] [Abstract][Full Text] [Related]
46. Raman spectroscopy of normal and diseased human breast tissues. Frank CJ; McCreery RL; Redd DC Anal Chem; 1995 Mar; 67(5):777-83. PubMed ID: 7762814 [TBL] [Abstract][Full Text] [Related]
47. Raman Microspectroscopic Investigation and Classification of Breast Cancer Pathological Characteristics. Li H; Ning T; Yu F; Chen Y; Zhang B; Wang S Molecules; 2021 Feb; 26(4):. PubMed ID: 33572420 [TBL] [Abstract][Full Text] [Related]
48. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Ma D; Shang L; Tang J; Bao Y; Fu J; Yin J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119732. PubMed ID: 33819758 [TBL] [Abstract][Full Text] [Related]
49. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy. Barman I; Dingari NC; Saha A; McGee S; Galindo LH; Liu W; Plecha D; Klein N; Dasari RR; Fitzmaurice M Cancer Res; 2013 Jun; 73(11):3206-15. PubMed ID: 23729641 [TBL] [Abstract][Full Text] [Related]
50. Incorporating cytochrome P450 3A4 genotype expression and FT-IR/Raman spectroscopy data as means of identification of breast tumors. Miller SO; Ewing GP; Howard C; Tachikawa H; Bigler SA; Barber WH; Angel M; McDaniel DO Biomed Sci Instrum; 2003; 39():24-9. PubMed ID: 12724863 [TBL] [Abstract][Full Text] [Related]
51. Diagnosis accuracy of Raman spectroscopy in the diagnosis of breast cancer: a meta-analysis. Wang MH; Liu X; Wang Q; Zhang HW Anal Bioanal Chem; 2022 Nov; 414(27):7911-7922. PubMed ID: 36138121 [TBL] [Abstract][Full Text] [Related]
52. Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. Shang L; Tang J; Wu J; Shang H; Huang X; Bao Y; Xu Z; Wang H; Yin J Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671896 [TBL] [Abstract][Full Text] [Related]
53. Serum Raman spectroscopy combined with multiple algorithms for diagnosing thyroid dysfunction and chronic renal failure. Wang H; Chen C; Tong D; Chen C; Gao R; Han H; Lv X Photodiagnosis Photodyn Ther; 2021 Jun; 34():102241. PubMed ID: 33662617 [TBL] [Abstract][Full Text] [Related]
54. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Zheng C; Liang L; Xu S; Zhang H; Hu C; Bi L; Fan Z; Han B; Xu W Anal Bioanal Chem; 2014 Sep; 406(22):5425-32. PubMed ID: 24958347 [TBL] [Abstract][Full Text] [Related]
55. Towards the intra-operative use of Raman spectroscopy in breast cancer-overcoming the effects of theatre lighting. Horsnell JD; Kendall C; Stone N Lasers Med Sci; 2016 Aug; 31(6):1143-9. PubMed ID: 27220528 [TBL] [Abstract][Full Text] [Related]
56. A micro-Raman spectroscopy study of inflammatory condition of human cervix: Probing of tissues and blood plasma samples. Barik AK; M SP; N M; Pai MV; Upadhya R; Pai AK; Lukose J; Chidangil S Photodiagnosis Photodyn Ther; 2022 Sep; 39():102948. PubMed ID: 35661825 [TBL] [Abstract][Full Text] [Related]
57. Raman 'optical biopsy' of human breast cancer. Abramczyk H; Brozek-Pluska B; Surmacki J; Jablonska-Gajewicz J; Kordek R Prog Biophys Mol Biol; 2012 Jan; 108(1-2):74-81. PubMed ID: 22122914 [TBL] [Abstract][Full Text] [Related]
58. Challenges for clinical implementation of Raman and FT-IR spectroscopy as a diagnostic tool. Carvalho LFCS Photodiagnosis Photodyn Ther; 2020 Dec; 32():101977. PubMed ID: 32866633 [No Abstract] [Full Text] [Related]
59. Recognition of chronic renal failure based on Raman spectroscopy and convolutional neural network. Gao R; Yang B; Chen C; Chen F; Chen C; Zhao D; Lv X Photodiagnosis Photodyn Ther; 2021 Jun; 34():102313. PubMed ID: 33915311 [TBL] [Abstract][Full Text] [Related]
60. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Hanna K; Krzoska E; Shaaban AM; Muirhead D; Abu-Eid R; Speirs V Br J Cancer; 2022 May; 126(8):1125-1139. PubMed ID: 34893761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]