These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36464485)

  • 1. Concept drift detection in toxicology datasets using discriminative subgraph-based drift detector.
    Bharti V; Nair SS; Jain A; Kumar Shukla K; Biswas B
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36464485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey on detecting healthcare concept drift in AI/ML models from a finance perspective.
    M S AR; C R N; B R S; Lahza H; Lahza HFM
    Front Artif Intell; 2022; 5():955314. PubMed ID: 37139355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hashing for Adaptive Real-Time Graph Stream Classification With Concept Drifts.
    Chi L; Li B; Zhu X; Pan S; Chen L
    IEEE Trans Cybern; 2018 May; 48(5):1591-1604. PubMed ID: 28858820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept Drift and Anomaly Detection in Graph Streams.
    Zambon D; Alippi C; Livi L
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5592-5605. PubMed ID: 29994077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discriminative Feature Selection for Uncertain Graph Classification.
    Kong X; Yu PS; Wang X; Ragin AB
    Proc SIAM Int Conf Data Min; 2013; 2013():82-93. PubMed ID: 25949925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph ensemble boosting for imbalanced noisy graph stream classification.
    Pan S; Wu J; Zhu X; Zhang C
    IEEE Trans Cybern; 2015 May; 45(5):940-54. PubMed ID: 25167562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adversarial concept drift detection under poisoning attacks for robust data stream mining.
    Korycki Ł; Krawczyk B
    Mach Learn; 2022 Jun; ():1-36. PubMed ID: 35668720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems.
    Toor AA; Usman M; Younas F; M Fong AC; Khan SA; Fong S
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive windowing based recurrent neural network for drift adaption in non-stationary environment.
    Suryawanshi S; Goswami A; Patil P; Mishra V
    J Ambient Intell Humaniz Comput; 2022 Jun; ():1-15. PubMed ID: 35789602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One or two things we know about concept drift-a survey on monitoring in evolving environments. Part A: detecting concept drift.
    Hinder F; Vaquet V; Hammer B
    Front Artif Intell; 2024; 7():1330257. PubMed ID: 38962502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PGraphD*: Methods for Drift Detection and Localisation Using Deep Learning Modelling of Business Processes.
    Hanga KM; Kovalchuk Y; Gaber MM
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Incremental Frequent Subgraph Patterns in IoT Environments.
    Bok K; Jeong J; Choi D; Yoo J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.
    Duda P; Jaworski M; Rutkowski L
    Int J Neural Syst; 2018 Mar; 28(2):1750048. PubMed ID: 29129128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LSTMDD: an optimized LSTM-based drift detector for concept drift in dynamic cloud computing.
    Mehmood T; Latif S; Jamail NSM; Malik A; Latif R
    PeerJ Comput Sci; 2024; 10():e1827. PubMed ID: 38435622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Chunk-Based Dynamic Weighted Majority for Imbalanced Data Streams With Concept Drift.
    Lu Y; Cheung YM; Yan Tang Y
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):2764-2778. PubMed ID: 31825880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Classifier Graph Based Recurring Concept Detection and Prediction Approach.
    Sun Y; Wang Z; Bai Y; Dai H; Nahavandi S
    Comput Intell Neurosci; 2018; 2018():4276291. PubMed ID: 29977276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online Active Learning for Drifting Data Streams.
    Liu S; Xue S; Wu J; Zhou C; Yang J; Li Z; Cao J
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):186-200. PubMed ID: 34288874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds.
    Grattarola D; Zambon D; Livi L; Alippi C
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1856-1869. PubMed ID: 31380770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast adapting ensemble: a new algorithm for mining data streams with concept drift.
    Ortíz Díaz A; del Campo-Ávila J; Ramos-Jiménez G; Frías Blanco I; Caballero Mota Y; Mustelier Hechavarría A; Morales-Bueno R
    ScientificWorldJournal; 2015; 2015():235810. PubMed ID: 25879051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concept Drift Detection via Equal Intensity k-Means Space Partitioning.
    Liu A; Lu J; Zhang G
    IEEE Trans Cybern; 2021 Jun; 51(6):3198-3211. PubMed ID: 32324590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.