These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36464631)

  • 1. Scalable Fabrication of MXene-PVDF Nanocomposite Triboelectric Fibers via Thermal Drawing.
    Hasan MM; Sadeque MSB; Albasar I; Pecenek H; Dokan FK; Onses MS; Ordu M
    Small; 2023 Feb; 19(6):e2206107. PubMed ID: 36464631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing.
    Xu H; Tao J; Liu Y; Mo Y; Bao R; Pan C
    Small; 2022 Sep; 18(37):e2202477. PubMed ID: 35948484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns.
    Meena JS; Khanh TD; Jung SB; Kim JW
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29486-29498. PubMed ID: 37296075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances.
    Rana SMS; Rahman MT; Salauddin M; Sharma S; Maharjan P; Bhatta T; Cho H; Park C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4955-4967. PubMed ID: 33475336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors.
    Huang J; Hao Y; Zhao M; Li W; Huang F; Wei Q
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24774-24784. PubMed ID: 34015919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification.
    Feng PY; Xia Z; Sun B; Jing X; Li H; Tao X; Mi HY; Liu Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16916-16927. PubMed ID: 33819011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications.
    Gunasekhar R; Sathiyanathan P; Reza MS; Prasad G; Prabu AA; Kim H
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing.
    Bai Z; Xu Y; Li J; Zhu J; Gao C; Zhang Y; Wang J; Guo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42880-42890. PubMed ID: 32847347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors.
    Lee JP; Lee JW; Baik JM
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun PVDF/aromatic HBP of 4th gen based flexible and self-powered TENG for wearable energy harvesting and health monitoring.
    Gunasekhar R; Reza MS; Kim KJ; Prabu AA; Kim H
    Sci Rep; 2023 Dec; 13(1):22645. PubMed ID: 38114807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance All-Textile Triboelectric Nanogenerator toward Intelligent Sports Sensing and Biomechanical Energy Harvesting.
    Zheng Z; Ma X; Lu M; Yin H; Jiang L; Guo Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10746-10755. PubMed ID: 38351572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Energy Harvesting Ability of Single-Layer Binary Fiber Nanocomposite Membrane for Multifunctional Wearable Hybrid Piezoelectric and Triboelectric Nanogenerator and Self-Powered Sensors.
    Huang A; Zhu Y; Peng S; Tan B; Peng X
    ACS Nano; 2024 Jan; 18(1):691-702. PubMed ID: 38147828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Loaded 3D Marigold Flower-Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications.
    Manchi P; Graham SA; Patnam H; Paranjape MV; Yu JS
    Small; 2022 May; 18(20):e2200822. PubMed ID: 35419981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Poled Piezoelectric Nanocomposite Fiber Sensors for Wireless Monitoring of Physiological Signals.
    Hasan MM; Rahman M; Sadeque MSB; Ordu M
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):34549-34560. PubMed ID: 38940307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triboelectric Nanogenerator-Based Near-Field Electrospinning System for Optimizing PVDF Fibers with High Piezoelectric Performance.
    Guo Y; Zhang H; Zhong Y; Shi S; Wang Z; Wang P; Zhao Y
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5242-5252. PubMed ID: 36661114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and sensing performance of wet-Spun fabric triboelectric nanogenerator for energy harvesting.
    Li M; Zhang Y; Wang P; Zhang Y; Hu J; Li Y
    Nanotechnology; 2024 Jul; ():. PubMed ID: 39025082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyvinylidene Fluoride Surface Polarization Enhancement for Liquid-Solid Triboelectric Nanogenerator and Its Application.
    Vu DL; Le CD; Ahn KK
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Powered Flow Rate Sensing via a Single-Electrode Flowing Liquid Based Triboelectric Nanogenerator.
    Vu DL; Nguyen QT; Chung PS; Ahn KK
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofiber-Based Substrate for a Triboelectric Nanogenerator: High-Performance Flexible Energy Fiber Mats.
    Abir SSH; Sadaf MUK; Saha SK; Touhami A; Lozano K; Uddin MJ
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60401-60412. PubMed ID: 34882388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.