These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36464638)

  • 21. Fabrication of Homochiral Metal-Organic Frameworks in TiO
    Dai Z; Guo J; Zhao C; Gao Z; Song YY
    Anal Chem; 2021 Aug; 93(33):11515-11524. PubMed ID: 34378917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes.
    Huang L; Lin Q; Li Y; Zheng G; Chen Y
    Anal Bioanal Chem; 2019 Jan; 411(2):471-478. PubMed ID: 30450507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical Field Regulation of Ion Transport in Polyethylene Terephthalate Nanochannels.
    Li Y; Du G; Mao G; Guo J; Zhao J; Wu R; Liu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38055-38060. PubMed ID: 31553570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chiral Selective Transport of Proteins by Cysteine-Enantiomer-Modified Nanopores.
    Zhang F; Sun Y; Tian D; Li H
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7186-7190. PubMed ID: 28481008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetically engineered bacterium-modified magnetic particles assisted chiral recognition and colorimetric determination of D/L-tryptophan in millets.
    Li L; Luo Y; Jia L
    Food Chem; 2023 May; 407():135125. PubMed ID: 36495743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical enantioselective sensor for effective recognition of tryptophan isomers based on chiral polyaniline twisted nanoribbon.
    He S; Shang X; Lu W; Tian Y; Xu Z; Zhang W
    Anal Chim Acta; 2021 Feb; 1147():155-164. PubMed ID: 33485574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II).
    Qian J; Yi Y; Zhang D; Zhu G
    Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial Biomolecular Channels: Enantioselective Transmembrane Transport of Amino Acids Mediated by Homochiral Zirconium Metal-Organic Cages.
    Li Y; Dong J; Gong W; Tang X; Liu Y; Cui Y; Liu Y
    J Am Chem Soc; 2021 Dec; 143(49):20939-20951. PubMed ID: 34851640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation.
    Zhang H; Tian Y; Hou J; Hou X; Hou G; Ou R; Wang H; Jiang L
    ACS Nano; 2015 Dec; 9(12):12264-73. PubMed ID: 26474219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electricity-Wettability Controlled Fast Transmission of Dopamine in Nanochannels.
    Fang Y; Xu W; Yang L; Qu H; Wang W; Zhang S; Li H
    Small; 2023 Apr; 19(15):e2205488. PubMed ID: 36617514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiral recognition of tryptophan enantiomers with UV-Vis spectrophotometry approach by using L-cysteine modified ZnFe
    Deng K; Chen S; Song H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120847. PubMed ID: 35016061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A renewable electrochemical sensor based on a self-assembled framework of chiral molecules for efficient identification of tryptophan isomers.
    Gong T; Zhu S; Huang S; Gu P; Xiong Y; Zhang J; Jiang X
    Anal Chim Acta; 2022 Jan; 1191():339276. PubMed ID: 35033270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials.
    Ahn HY; Yoo S; Cho NH; Kim RM; Kim H; Huh JH; Lee S; Nam KT
    Acc Chem Res; 2019 Oct; 52(10):2768-2783. PubMed ID: 31536328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomimicking TRPM8: A Conversely Temperature-Dependent Nonionic Retrorse Nanochannel for Ion Flow Control.
    Yang T; Yang Z; Xin W; Feng Y; Kong X; Wang Y; Li H; Wen L; Zhou G
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38679867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-responsive nanochannels based on the supramolecular host-guest system.
    Quan J; Guo Y; Ma J; Long D; Wang J; Zhang L; Sun Y; Dhinakaran MK; Li H
    Front Chem; 2022; 10():986908. PubMed ID: 36212057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the interaction between the chiral drug of propranolol and alpha1-acid glycoprotein by fluorescence spectrophotometry.
    Zhang F; Du Y; Ye B; Li P
    J Photochem Photobiol B; 2007 Mar; 86(3):246-51. PubMed ID: 17208004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications.
    Dou X; Mehwish N; Zhao C; Liu J; Xing C; Feng C
    Acc Chem Res; 2020 Apr; 53(4):852-862. PubMed ID: 32216333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enantiomer Differentiation of Amino Acid Stereoisomers by Structural Mass Spectrometry Using Noncovalent Trinuclear Copper Complexes.
    Zlibut E; May JC; McLean JA
    J Am Soc Mass Spectrom; 2022 Jun; 33(6):996-1002. PubMed ID: 35580025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L; Xu C; Liu C; Li B
    Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.