BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36464641)

  • 1. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway.
    Duan J; Hemschemeier A; Burr DJ; Stripp ST; Hofmann E; Happe T
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216903. PubMed ID: 36464641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.
    Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST
    Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the Molecular Mechanism of Formaldehyde Inhibition of [FeFe]-Hydrogenases.
    Duan J; Veliju A; Lampret O; Liu L; Yadav S; Apfel UP; Armstrong FA; Hemschemeier A; Hofmann E
    J Am Chem Soc; 2023 Dec; 145(48):26068-26074. PubMed ID: 37983562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases.
    Duan J; Senger M; Esselborn J; Engelbrecht V; Wittkamp F; Apfel UP; Hofmann E; Stripp ST; Happe T; Winkler M
    Nat Commun; 2018 Nov; 9(1):4726. PubMed ID: 30413719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum.
    Cornish AJ; Gärtner K; Yang H; Peters JW; Hegg EL
    J Biol Chem; 2011 Nov; 286(44):38341-38347. PubMed ID: 21900241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations.
    Mebs S; Kositzki R; Duan J; Kertess L; Senger M; Wittkamp F; Apfel UP; Happe T; Stripp ST; Winkler M; Haumann M
    Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):28-41. PubMed ID: 28919500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer.
    Senger M; Eichmann V; Laun K; Duan J; Wittkamp F; Knör G; Apfel UP; Happe T; Winkler M; Heberle J; Stripp ST
    J Am Chem Soc; 2019 Oct; 141(43):17394-17403. PubMed ID: 31580662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.
    Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR
    Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases.
    Lampret O; Duan J; Hofmann E; Winkler M; Armstrong FA; Happe T
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20520-20529. PubMed ID: 32796105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study.
    Long H; King PW; Chang CH
    J Phys Chem B; 2014 Jan; 118(4):890-900. PubMed ID: 24405487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.
    Shima S; Pilak O; Vogt S; Schick M; Stagni MS; Meyer-Klaucke W; Warkentin E; Thauer RK; Ermler U
    Science; 2008 Jul; 321(5888):572-5. PubMed ID: 18653896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events.
    Pagnier A; Martin L; Zeppieri L; Nicolet Y; Fontecilla-Camps JC
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):104-9. PubMed ID: 26699472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase.
    Stripp ST; Mebs S; Haumann M
    Inorg Chem; 2020 Nov; 59(22):16474-16488. PubMed ID: 33147959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isocyanide in biochemistry? A theoretical investigation of the electronic effects and energetics of cyanide ligand protonation in [FeFe]-hydrogenases.
    Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L
    Chemistry; 2011 Feb; 17(6):1954-65. PubMed ID: 21274947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase.
    Morra S; Giraudo A; Di Nardo G; King PW; Gilardi G; Valetti F
    PLoS One; 2012; 7(10):e48400. PubMed ID: 23133586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor.
    Winkler M; Esselborn J; Happe T
    Biochim Biophys Acta; 2013; 1827(8-9):974-85. PubMed ID: 23507618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN⁻ ligands derive from tyrosine.
    Kuchenreuther JM; George SJ; Grady-Smith CS; Cramer SP; Swartz JR
    PLoS One; 2011; 6(5):e20346. PubMed ID: 21673792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics.
    Senger M; Mebs S; Duan J; Wittkamp F; Apfel UP; Heberle J; Haumann M; Stripp ST
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8454-9. PubMed ID: 27432985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.