These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36465113)

  • 21. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.
    Hernandez JM; Baker SH; Lorbach SC; Shively JM; Tabita FR
    J Bacteriol; 1996 Jan; 178(2):347-56. PubMed ID: 8550452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.
    Dangel AW; Tabita FR
    J Bacteriol; 2015 Nov; 197(22):3488-98. PubMed ID: 26324454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic CO
    Satagopan S; Sun Y; Parquette JR; Tabita FR
    Biotechnol Biofuels; 2017; 10():175. PubMed ID: 28694846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.
    Lynn TM; Ge T; Yuan H; Wei X; Wu X; Xiao K; Kumaresan D; Yu SS; Wu J; Whiteley AS
    Microb Ecol; 2017 Apr; 73(3):645-657. PubMed ID: 27838764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization and endosymbiotic localization of the gene encoding D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome.
    Elsaied H; Kimura H; Naganuma T
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1947-1957. PubMed ID: 12055314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term chemical fertilization-driving changes in soil autotrophic microbial community depresses soil CO
    Liao H; Qin F; Wang K; Zhang Y; Hao X; Chen W; Huang Q
    Sci Total Environ; 2020 Dec; 748():141317. PubMed ID: 32814290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An improved
    Wilson RH; Martin-Avila E; Conlan C; Whitney SM
    J Biol Chem; 2018 Jan; 293(1):18-27. PubMed ID: 28986448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Something from almost nothing: carbon dioxide fixation in chemoautotrophs.
    Shively JM; van Keulen G; Meijer WG
    Annu Rev Microbiol; 1998; 52():191-230. PubMed ID: 9891798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.
    Guo G; Kong W; Liu J; Zhao J; Du H; Zhang X; Xia P
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8765-76. PubMed ID: 26084890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil.
    Wu X; Ge T; Wang W; Yuan H; Wegner CE; Zhu Z; Whiteley AS; Wu J
    Front Microbiol; 2015; 6():379. PubMed ID: 26005435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria.
    Tsai YC; Lapina MC; Bhushan S; Mueller-Cajar O
    Nat Commun; 2015 Nov; 6():8883. PubMed ID: 26567524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO.
    Schwedock J; Harmer TL; Scott KM; Hektor HJ; Seitz AP; Fontana MC; Distel DL; Cavanaugh CM
    Arch Microbiol; 2004 Sep; 182(1):18-29. PubMed ID: 15316720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO
    Erb TJ; Zarzycki J
    Curr Opin Biotechnol; 2018 Feb; 49():100-107. PubMed ID: 28843191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metagenomic and
    Xiao KQ; Ge TD; Wu XH; Peacock CL; Zhu ZK; Peng J; Bao P; Wu JS; Zhu YG
    Environ Microbiol; 2021 Feb; 23(2):924-933. PubMed ID: 32827180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reliance of glycerol utilization by Cupriavidus necator on CO
    Strittmatter CS; Eggers J; Biesgen V; Pauels I; Becker F; Steinbüchel A
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2541-2555. PubMed ID: 35325274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.
    Long XE; Yao H; Wang J; Huang Y; Singh BK; Zhu YG
    Environ Sci Technol; 2015 Jun; 49(12):7152-60. PubMed ID: 25989872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase.
    Wang X; Modak HV; Tabita FR
    J Bacteriol; 1993 Nov; 175(21):7109-14. PubMed ID: 8226655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular understanding of autotrophic CO
    Li M; Xu J; Jiang Z; Li Q
    J Biotechnol; 2020 Aug; 320():36-43. PubMed ID: 32553532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.