These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36465961)

  • 1. Sparse measures with swarm-based pliable hidden Markov model and deep learning for EEG classification.
    Prabhakar SK; Ju YG; Rajaguru H; Won DO
    Front Comput Neurosci; 2022; 16():1016516. PubMed ID: 36465961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SASDL and RBATQ: Sparse Autoencoder With Swarm Based Deep Learning and Reinforcement Based Q-Learning for EEG Classification.
    Prabhakar SK; Lee SW
    IEEE Open J Eng Med Biol; 2022; 3():58-68. PubMed ID: 35770240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network.
    Prabhakar SK; Rajaguru H; So K; Won DO
    Front Comput Neurosci; 2022; 16():900885. PubMed ID: 35847966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Sparse Representation and Multiclass Support Matrix Machines for the Classification of Motor Imagery EEG Signals.
    Razzak I; A Hameed I; Xu G
    IEEE J Transl Eng Health Med; 2019; 7():2000508. PubMed ID: 32309055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks.
    Huang JS; Li Y; Chen BQ; Lin C; Yao B
    Front Neurosci; 2020; 14():808. PubMed ID: 33177970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fusion-Based Technique With Hybrid Swarm Algorithm and Deep Learning for Biosignal Classification.
    Prabhakar SK; Rajaguru H; Kim C; Won DO
    Front Hum Neurosci; 2022; 16():895761. PubMed ID: 35721347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.
    Miao M; Hu W; Yin H; Zhang K
    Comput Math Methods Med; 2020; 2020():1981728. PubMed ID: 32765639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
    Chai R; Ling SH; San PP; Naik GR; Nguyen TN; Tran Y; Craig A; Nguyen HT
    Front Neurosci; 2017; 11():103. PubMed ID: 28326009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.
    Shi J; Liu X; Li Y; Zhang Q; Li Y; Ying S
    J Neurosci Methods; 2015 Oct; 254():94-101. PubMed ID: 26192325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable length particle swarm optimization and multi-feature deep fusion for motor imagery EEG classification.
    Li H; Guo W; Zhang R; Xiu C
    Biochem Biophys Res Commun; 2021 Sep; 571():131-136. PubMed ID: 34325128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gradient-based automatic optimization CNN framework for EEG state recognition.
    Wang H; Zhu X; Chen P; Yang Y; Ma C; Gao Z
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34883472
    [No Abstract]   [Full Text] [Related]  

  • 12. EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder.
    Liu J; Wu G; Luo Y; Qiu S; Yang S; Li W; Bi Y
    Front Syst Neurosci; 2020; 14():43. PubMed ID: 32982703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProbPFP: a multiple sequence alignment algorithm combining hidden Markov model optimized by particle swarm optimization with partition function.
    Zhan Q; Wang N; Jin S; Tan R; Jiang Q; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):573. PubMed ID: 31760933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals.
    Ari B; Sobahi N; Alçin ÖF; Sengur A; Acharya UR
    Comput Biol Med; 2022 Apr; 143():105311. PubMed ID: 35158117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification.
    Liu X; Lv L; Shen Y; Xiong P; Yang J; Liu J
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33395676
    [No Abstract]   [Full Text] [Related]  

  • 16. Hybrid deep convolutional model-based emotion recognition using multiple physiological signals.
    Patlar Akbulut F
    Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1678-1690. PubMed ID: 35107402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CNN identified by reinforcement learning-based optimization framework for EEG-based state evaluation.
    Yang Y; Gao Z; Li Y; Wang H
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33882477
    [No Abstract]   [Full Text] [Related]  

  • 18. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification and Reconstruction of Biomedical Signals Based on Convolutional Neural Network.
    Zhu Z; Chen H; Xie S; Hu Y; Chang J
    Comput Intell Neurosci; 2022; 2022():6548811. PubMed ID: 35909845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.