These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36465967)

  • 1. Dynamic control of eye-head gaze shifts by a spiking neural network model of the superior colliculus.
    Alizadeh A; Van Opstal AJ
    Front Comput Neurosci; 2022; 16():1040646. PubMed ID: 36465967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maps and sensorimotor transformations for eye-head gaze shifts: Role of the midbrain superior colliculus.
    van Opstal AJ; Kasap B
    Prog Brain Res; 2019; 249():19-33. PubMed ID: 31325979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network models for the gaze shift system in the superior colliculus and cerebellum.
    Wang X; Jin J; Jabri M
    Neural Netw; 2002 Sep; 15(7):811-32. PubMed ID: 14672160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural encoding of instantaneous kinematics of eye-head gaze shifts in monkey superior Colliculus.
    van Opstal AJ
    Commun Biol; 2023 Sep; 6(1):927. PubMed ID: 37689726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Stimulation in a Spiking Neural Network Model of the Midbrain Superior Colliculus.
    Kasap B; van Opstal AJ
    Front Appl Math Stat; 2018; 4():47. PubMed ID: 31534950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.
    Kasap B; van Opstal AJ
    Biol Cybern; 2017 Aug; 111(3-4):249-268. PubMed ID: 28528360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity.
    Paré M; Crommelinck M; Guitton D
    Exp Brain Res; 1994; 101(1):123-39. PubMed ID: 7843291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of primate IBN spike trains using system identification techniques. III. Relationship To motor error during head-fixed saccades and head-free gaze shifts.
    Cullen KE; Guitton D
    J Neurophysiol; 1997 Dec; 78(6):3307-22. PubMed ID: 9405546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spiking neural network model of the Superior Colliculus that is robust to changes in the spatial-temporal input.
    Alizadeh A; Van Opstal AJ
    Sci Rep; 2022 Apr; 12(1):6916. PubMed ID: 35484389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.
    Munoz DP; Guitton D; Pélisson D
    J Neurophysiol; 1991 Nov; 66(5):1642-66. PubMed ID: 1765799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys.
    Freedman EG; Stanford TR; Sparks DL
    J Neurophysiol; 1996 Aug; 76(2):927-52. PubMed ID: 8871209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of superior colliculus in adaptive eye-head coordination during gaze shifts.
    Constantin AG; Wang H; Crawford JD
    J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics.
    van Opstal AJ; Goossens HH
    Biol Cybern; 2008 Jun; 98(6):561-77. PubMed ID: 18491166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command.
    Freedman EG; Sparks DL
    J Neurophysiol; 1997 Sep; 78(3):1669-90. PubMed ID: 9310452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity.
    Choi WY; Guitton D
    J Neurosci; 2009 Jun; 29(22):7166-80. PubMed ID: 19494139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
    Paré M; Guitton D
    J Neurophysiol; 1998 Jun; 79(6):3060-76. PubMed ID: 9636108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat.
    Guillaume A; Pélisson D
    J Physiol; 2006 Dec; 577(Pt 3):779-94. PubMed ID: 17023510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstimulation in a spiking neural network model of the midbrain superior colliculus.
    Kasap B; van Opstal AJ
    PLoS Comput Biol; 2019 Apr; 15(4):e1006522. PubMed ID: 30978180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations.
    Matsuo S; Bergeron A; Guitton D
    J Neurosci; 2004 Mar; 24(11):2760-73. PubMed ID: 15028769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic ensemble coding of saccades in the monkey superior colliculus.
    Goossens HH; Van Opstal AJ
    J Neurophysiol; 2006 Apr; 95(4):2326-41. PubMed ID: 16371452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.