BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36466144)

  • 1. A Real-Time Fluorescence Feedback System for Infrared Laser Sealing of Blood Vessels.
    Saeed WM; Fried NM
    IEEE J Sel Top Quantum Electron; 2023; 29(4 Biophotonics):. PubMed ID: 36466144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time, Nondestructive Optical Feedback Systems for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35949201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Coherence Tomography Feedback System for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11948():. PubMed ID: 35950053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive optical feedback systems for use during infrared laser sealing of blood vessels.
    Giglio NC; Fried NM
    Lasers Surg Med; 2022 Aug; 54(6):875-882. PubMed ID: 35391495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fiber-optic linear beam shaping designs for laparoscopic laser sealing of vascular tissues.
    Giglio NC; Grose HM; Fried NM
    Opt Eng; 2022 Feb; 61(2):. PubMed ID: 36711441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous sealing and bisection of porcine renal blood vessels, ex vivo, using a continuous-wave, infrared diode laser at 1470 nm.
    Saeed WM; Yoshino JK; Traynham AJ; Fried NM
    Lasers Med Sci; 2024 Jun; 39(1):161. PubMed ID: 38907065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Simulations for Infrared Laser Sealing and Cutting of Blood Vessels.
    Giglio NC; Fried NM
    IEEE J Sel Top Quantum Electron; 2021; 27(4):1-8. PubMed ID: 33746498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocating Side-Firing Fiber for Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35965612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of quartz and sapphire optical chambers for infrared laser sealing of vascular tissues using a reciprocating, side-firing optical fiber: Simulations and experiments.
    Saeed WM; O'Brien PJ; Yoshino J; Restelli AR; Traynham AJ; Fried NM
    Lasers Surg Med; 2023 Dec; 55(10):886-899. PubMed ID: 38009367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser.
    Giglio NC; Hutchens TC; Perkins WC; Latimer C; Ward A; Nau WH; Fried NM
    J Biomed Opt; 2014 Mar; 19(3):38002. PubMed ID: 24658792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sealing and Bisection of Blood Vessels using a 1470 nm Laser: Optical, Thermal, and Tissue Damage Simulations.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2021 Mar; 11621():. PubMed ID: 34305258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared laser sealing of porcine vascular tissues using a 1,470 nm diode laser: Preliminary in vivo studies.
    Cilip CM; Kerr D; Latimer CA; Rosenbury SB; Giglio NC; Hutchens TC; Nau WH; Fried NM
    Lasers Surg Med; 2017 Apr; 49(4):366-371. PubMed ID: 27785787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype.
    Hardy LA; Hutchens TC; Larson ER; Gonzalez DA; Chang CH; Nau WH; Fried NM
    J Biomed Opt; 2017 May; 22(5):58002. PubMed ID: 28550708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a Laparoscopic Ferromagnetic Technology-based Vessel Sealing Device and Comparative Study to Ultrasonic and Bipolar Laparoscopic Devices.
    Chen J; Jensen CR; Manwaring PK; Glasgow RE
    Surg Laparosc Endosc Percutan Tech; 2017 Apr; 27(2):e12-e17. PubMed ID: 28234706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.
    Cilip CM; Rosenbury SB; Giglio N; Hutchens TC; Schweinsberger GR; Kerr D; Latimer C; Nau WH; Fried NM
    J Biomed Opt; 2013 May; 18(5):58001. PubMed ID: 23640080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perpendicular blood vessel seals are stronger than those made at an angle.
    Voegele AC; Korvick DL; Gutierrez M; Clymer JW; Amaral JF
    J Laparoendosc Adv Surg Tech A; 2013 Aug; 23(8):669-72. PubMed ID: 23755852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence.
    Lange B; Cordes J; Brinkmann R
    Lasers Surg Med; 2015 Nov; 47(9):737-44. PubMed ID: 26392115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conduction, compression, and electrical current--an evaluation of major parameters of electrosurgical vessel sealing in a porcine in vitro model.
    Wallwiener CW; Rajab TK; Zubke W; Isaacson KB; Enderle M; Schäller D; Wallwiener M
    J Minim Invasive Gynecol; 2008; 15(5):605-10. PubMed ID: 18640881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.
    Timm RW; Asher RM; Tellio KR; Welling AL; Clymer JW; Amaral JF
    Med Devices (Auckl); 2014; 7():263-71. PubMed ID: 25114600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of collagen and elastin content on the burst pressure of human blood vessel seals formed with a bipolar tissue sealing system.
    Latimer CA; Nelson M; Moore CM; Martin KE
    J Surg Res; 2014 Jan; 186(1):73-80. PubMed ID: 24035229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.