BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36466253)

  • 1. A non-destructive testing method for early detection of ginseng root diseases using machine learning technologies based on leaf hyperspectral reflectance.
    Zhao G; Pei Y; Yang R; Xiang L; Fang Z; Wang Y; Yin D; Wu J; Gao D; Yu D; Li X
    Front Plant Sci; 2022; 13():1031030. PubMed ID: 36466253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral reflectance imaging for nondestructive evaluation of root rot in Korean ginseng (
    Park E; Kim YS; Faqeerzada MA; Kim MS; Baek I; Cho BK
    Front Plant Sci; 2023; 14():1109060. PubMed ID: 36818876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages.
    Zheng Q; Huang W; Cui X; Dong Y; Shi Y; Ma H; Liu L
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning.
    Nguyen C; Sagan V; Maimaitiyiming M; Maimaitijiang M; Bhadra S; Kwasniewski MT
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging.
    Abdulridha J; Min A; Rouse MN; Kianian S; Isler V; Yang C
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms.
    Sonobe R; Hirono Y; Oi A
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32192044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification models for Tobacco Mosaic Virus and Potato Virus Y using hyperspectral and machine learning techniques.
    Chen H; Han Y; Liu Y; Liu D; Jiang L; Huang K; Wang H; Guo L; Wang X; Wang J; Xue W
    Front Plant Sci; 2023; 14():1211617. PubMed ID: 37915507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully connected-convolutional (FC-CNN) neural network based on hyperspectral images for rapid identification of P. ginseng growth years.
    Chen X; Du H; Liu Y; Shi T; Li J; Liu J; Zhao L; Liu S
    Sci Rep; 2024 Mar; 14(1):7209. PubMed ID: 38532030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms.
    Tuerxun N; Zheng J; Wang R; Wang L; Liu L
    Front Plant Sci; 2023; 14():1260772. PubMed ID: 38034562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning.
    Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W
    Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSGF-GLP: fusion method of visible and hyperspectral data for early detection of discolored standing trees.
    Zhou H; Wu Y; Wang W; Song J; Liu G; Shi J; Sun H
    Front Plant Sci; 2023; 14():1280445. PubMed ID: 38078083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN).
    Wang D; Vinson R; Holmes M; Seibel G; Bechar A; Nof S; Tao Y
    Sci Rep; 2019 Mar; 9(1):4377. PubMed ID: 30867450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of Hyperspectral Reflectance to Estimate Photosynthetic Characteristics in Upland Cotton (
    Han P; Zhai Y; Liu W; Lin H; An Q; Zhang Q; Ding S; Zhang D; Pan Z; Nie X
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Classification of Downy Mildew Severity Stages in Watermelon Utilizing Aerial and Ground Remote Sensing and Machine Learning.
    Abdulridha J; Ampatzidis Y; Qureshi J; Roberts P
    Front Plant Sci; 2022; 13():791018. PubMed ID: 35668798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean.
    Yoosefzadeh-Najafabadi M; Earl HJ; Tulpan D; Sulik J; Eskandari M
    Front Plant Sci; 2020; 11():624273. PubMed ID: 33510761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.].
    Liu EH; Zhou GS; Zhou L
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Rice Sheath Blight through Spectral Responses Using Hyperspectral Images.
    Lin F; Guo S; Tan C; Zhou X; Zhang D
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study of Nitrogen Deficiency Inversion in Rice Leaves Based on the Hyperspectral Reflectance Differential.
    Yu F; Feng S; Du W; Wang D; Guo Z; Xing S; Jin Z; Cao Y; Xu T
    Front Plant Sci; 2020; 11():573272. PubMed ID: 33343590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Tree species discrimination based on leaf-level hyperspectral characteristic analysis].
    Wang ZH; Ding LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1825-9. PubMed ID: 20827979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gray mold and anthracnose disease detection on strawberry leaves using hyperspectral imaging.
    Zhang B; Ou Y; Yu S; Liu Y; Liu Y; Qiu W
    Plant Methods; 2023 Dec; 19(1):148. PubMed ID: 38115023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.